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Summary



• HQET for Heavy-Light Systems

• Chiral Symmetry for Light Quarks

• Lattice QCD

Toolbox for QCD Dynamics
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Relativistic Potential Models

We rewrite Eq. (2) introducing the most general parameterization for the
four spin components of the light quark wavefunction
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Here Y !
m(θ, ϕ) are spherical harmonics that encode the angular dependence

while f 0
n,!,j(r), f 1

n,!,j(r) are real functions that encode that radial dependence.
k+

!,j,m and k−
!,j,m are fixed, up to an overall phase, by imposing a normalization

condition. Our choice of the phase is such that
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2.2 Choice of the potential

Within our basic framework, H(0) is given by the relativistic Dirac Hamilto-
nian

H(0) = γ0(−i/∂ + mq) + V (r) (6)

and the rotational-invariant potential is the sum of a constant factor (Mh),
a scalar part (Vs) and (the zeroth component of) a vector part (Vv)

V (r) = Mh + γ0Vs(r) + Vv(r) (7)

The constant Mh is a an overall energy shift that depends on the heavy quark
flavor and, in general, it is not equal to mh, as often assumed in the literature.
For this reason we consider mh and Mh two independent parameters of the
model.

Asymptotic freedom suggests that at short distances the potential is dom-
inated by a vector part that asymptotically approaches a Coulomb potential,
V ∼ Vv ∼ 1/r. On the other hand lattice simulations indicate that at
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large distances the potential is confining, scalar and asymptotically linear,
V ∼ Vs ∼ r.

The naive assumption about a short distance Coulomb-like divergent be-
havior of the potential is doomed because it gives rise to ultraviolet diver-
gences (as discussed in Ref. [8] and Ref. [9]). It this context the divergence
arises in the 1/mh correction to the energy and it is due to the inconsistency
of a static point-like source (the heavy quark) within a relativistic framework.
One solution is assuming that the heavy quark is static but not point-like,
therefore the potential that it generates is a convolution of the Coulomb-like
potential and the square of the heavy quark wavefunction (peaked around
the center of mass of the system and smeared within some small length scale
λ−1).

More generally, one is allowed to cure this divergence by regulating the
potential close to the origin (on a length scale of the order λ−1). Different
choices for the regulator are allowed and they do not affect the physics we
want to describe, providing that λ−1 is small enough. The values of the
parameters that appear in the Hamiltonian, on the contrary, depend on this
choice since they run with λ. In fact, to obtain the same spectrum, different
choices for the regulator imply different fitting parameters.

We chose to regulate the vector potential by assuming a Gaussian shape
for the wavefunction of the heavy quark, Φ(x) = exp(−x2λ2/2), and with
this choice

Vv(r) = −4

3

∫
|Φ(x)|2 αs

|r − x|d
3x = −4

3

αs

r
erf(λr) (8)

For the scalar potential we assume a simple linear form

Vs(r) = br + c (9)

We observe that c is not a physical parameter since it can be absorbed into
the definition of mq. For this reason c will be omitted from now on.

Summarizing, the nine parameters of our model are

αs, λ, b, mu, ms, mc, Mc, mb, Mb (10)

where mu ≡ md and ms are mass parameters for the light u, d and s quarks
respectively, equivalent to constituent quark masses shifted by the constant
amount c of eq. (9), which is undetermined in our model. mc is the mass of
the c quark with Mc the corresponding energy shift. Analogously for the b
quark.
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We model the most general heavy-light meson (in the D, Ds, B, Bs fam-
ily), H, as a bound state of a light quark (q) and a heavy quark (h). The
heavy quark is treated as a static source of chromoelectric field and the only
quantum number associated with it is its spin. The light quark is treated
relativistically and its state is described by the wavefunction ψn,!,j,m(r, θ, ϕ).
In analogy with the hydrogen atom, we introduce the following quantum
numbers:

• n, the number associated with the radial excitations;

• $, the orbital angular momentum;

• j, the total angular momentum of the light quark;

• m, the component of j along the ẑ axis;

• J , the total angular momentum of the system;

• M , the component of J along the ẑ axis;

• S, the spin of the heavy quark along the ẑ axis;

The parameters of our model are the masses of the light quarks (mq for
q = u, d or s), the masses of the heavy quarks (mh for h = c or b) and the
chromoelectric potential of the heavy quark (V (r)).

The total wavefunction of the system can be decomposed as follows

Ψn,!,j,J,M(r, θ, ϕ) =
∑

S∈{− 1

2
,+ 1

2}
CJ,M

j,m; 1
2
,S

ψn,!,j,m(r, θ, ϕ) ⊗ ξS (2)

where CJ,M
j,m; 1

2
,S

are the usual Clebsh-Gordan coefficients and ξS is a two com-

ponent spinor representing the heavy quark. Eq. (2) is a solution of the
following eigenvalue problem

HΨn,!,j,J,M = En,!,j,JΨn,!,j,J,M (3)

where H is the Hamiltonian of the system. The energy levels in Eq. (3) do
not depend on M because of rotational invariance.

4

choice for the parameters of the chromoelectric potential and in the inclusion
of mixing effects both in the spectrum and in the decay amplitudes. Moreover
we use our results for the radial wavefunctions of the excited mesons to make
a comparison with recent lattice results. From the comparison we extract
an estimation for g8

A, the effective coupling of the quark to the pseudoscalar
mesons. We find g8

A = 0.53 ± 0.11
We present numerical results for the low-lying spectrum (excited states

up to the 3S states). We also compute the pseudoscalar meson hadronic
transitions for these states as a function of the chiral quark model effective
coupling constant. Comparing our results with recent experimental width
measurements we estimate this effective coupling g8

A = 0.82 ± 0.09.
In Section 2, we discuss our determination of the spectrum of excited

states. Our notation, the choice of the potential, inclusion of mixing and
other order 1/mh corrections are explained. Details of the masses and wave-
functions are presented for the low-lying excitation spectrum. Comparison is
made with present experimental data. Our treatment of hadronic decays is
described in Section 3. The analytic results are summarized in Eqs. (32-34).
Explicit expressions for the coupling coefficients appearing in these equations
are given in Appendix A. Also in Section 3, details of the partial rates for the
1S and 1P states in the D, Ds, B and Bs systems are presented. Again com-
parison is made with present experimental data. A complete list of remaining
results for masses and partial decay widths is reported in Appendix B.

2 Spectrum

2.1 Basic Model and Notation

The general Hamiltonian of the heavy-light system can be expanded in powers
of (1/mh)

H = H(0) +
1

mh
H(1) +

1

m2
h

H(2) + ... (1)

However, even within the heavy quark limit, the general form of the zeroth
order Hamiltonian, H0, still involves the full nonperturbative QCD dynamics
for the remaining degrees of freedom (including light quark pair creation and
gluonic degrees of freedom). At present it can not be solved analytically. We
are forced to resort to use a relativistic potential model for H0.

3

Godfrey and Isgur, PRD32 (1985)32         
Goity and Roberts, PRD60 (1999) 034001
Di Pierro and EE, PRD64 (2001) 114004

kinetic terms

spin-orbit terms

hyperfine terms

Same potential form as in NRQCD

Softener

Absorb into mass

QCD coupling slope quark masses Meson masses

0.339  2.823  0.257  0.071 0.216 1.511 4.655  1.292 4.685
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Figure 2: Radial wavefunctions for some excited states (for non-strange
mesons). The continuum (dashed) line refers to the f 0(r) (f 1(r)) function.
These plots do not include the mixing contribution.
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H (njLJ) mexp. E0 Ephys. φ(%)

Ds (1
1

2 S0) 1.969 1.988 1.965
Ds (1

1

2 S1) 2.112 1.988 2.113

Ds (1
1

2 P0) 2.374 2.487
Ds (1

3

2 P1) 2.535 2.353 2.535 -11.62
Ds (1

3

2 P2) 2.573 2.353 2.581
Ds (1

1

2 P1) 2.374 2.605 11.62
Ds (2

1

2 S0) 2.540 2.700
Ds (2

1

2 S1) 2.540 2.806 1.97
Ds (1

5

2 D2) 2.606 2.900 -6.11

Ds (1
3

2 D1) 2.648 2.913 -1.97
Ds (1

5

2 D3) 2.606 2.925
Ds (1

3

2 D2) 2.648 2.953 6.11
Ds (2

1

2 P0) 2.777 3.067
Ds (2

3

2 P1) 2.775 3.114 -10.58
Ds (2

3

2 P2) 2.775 3.157 1.81
Ds (2

1

2 P1) 2.777 3.165 10.58

Ds (1
7

2 F3) 2.812 3.203 -3.60
Ds (1

7

2 F4) 2.812 3.220
Ds (1

5

2 F2) 2.857 3.224 -1.81
Ds (1

5

2 F3) 2.857 3.247 3.60
Ds (3

1

2 S0) 2.917 3.259
Ds (3

1

2 S1) 2.917 3.345

Table 2: Tabulated spectrum for Ds mesons. (All units in GeV). Notation
as in Table 1.
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H (njLJ) mexp. E0 Ephys. φ(%)

D (1
1

2 S0) 1.865 1.895 1.868
D (1

1

2 S1) 2.007 1.895 2.005

D (1
1

2 P0) 2.282 2.377
D (1

3

2 P1) 2.422 2.253 2.417 -10.92
D (1

3

2 P2) 2.459 2.253 2.460
D (1

1

2 P1) 2.282 2.490 10.92
D (2

1

2 S0) 2.447 2.589
D (2

1

2 S1) 2.447 2.692 2.17
D (1

5

2 D2) 2.504 2.775 -5.41

D (1
3

2 D1) 2.553 2.795 -2.17
D (1

5

2 D3) 2.504 2.799
D (1

3

2 D2) 2.553 2.833 5.41
D (2

1

2 P0) 2.683 2.949
D (2

3

2 P1) 2.679 2.995 -10.70
D (2

3

2 P2) 2.679 3.035 1.79
D (2

1

2 P1 2.683 3.045 10.70

D (1
7

2 F3) 2.709 3.074 -3.17
D (1

7

2 F4) 2.709 3.091
D (1

5

2 F2) 2.760 3.101 -1.79
D (1

5

2 F3) 2.760 3.123 3.17
D (3

1

2 S0) 2.823 3.141
D (3

1

2 S1) 2.823 3.226

Table 1: Tabulated spectrum for D mesons. E0 denotes the lowest order
energies. Ephys. includes all the order 1/mh corrections. (All units in GeV).
The mixings between lowest order states are denoted by φ.
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Decays of Excited States
For low-lying excited states the strong transitions:

(i.e. the energy of the string) is related to the classical angular momentum,
J , by E2 = πbJ . The factor two in the light meson picture can be explained
with the fact that the latter rotate around a center of mass that is located
at the middle of the string while for heavy-light mesons the center of mass
coincides with one of the two ends of the string.

This simple picture shows that the bulk of an heavy meson mass is domi-
nated by the mass of the heavy quark plus the potential energy associated to
the large distance interaction (∝ br), and again gives support to our assump-
tion that short distance behavior of the potential has a small contribution to
the spectrum.

3 Hadronic Transitions

3.1 Transition amplitudes

We start by considering the most general hadronic transition of the form

H ′ → H + x (27)

where H ′ and H are two heavy-light mesons containing the same heavy quark,
with wavefunctions Ψn′,!′,j′,J ′,M ′ and Ψn,!,j,J,M respectively and x can be any
light meson with momentum p. Although we keep our formalism general, in
this paper we only compute numerically decays in which x is a pseudoscalar
meson belonging to the flavor octet (π, K, η).

In the context of the chiral quark model [4] this transition is mediated by
an effective interaction of the form

Lint =
g8

A√
2fx

q̄′iXMijqj + O(∂2) (28)

where fx can be identified with fπ $ 130MeV and g8
A is an effective coupling.

X = /∂γ5 is the spin structure associated to the transition, i, j are SU(3)flavor

indices and

M =
√

2


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 (29)

is the usual SU(3)L+R invariant representation of the pseudoscalar mesons.
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axial current

the partial widths are

The coefficients cab,k
!x

(X) depend on the quantum numbers of the mother
and the daughter heavy mesons. Their explicit expression is given in the
Appendix A. The integrals are computed numerically.

One can extend our analysis for octet pseudoscalar transitions to the
approximately flavor singlet η′. In the large Nc limit the η1 combines with the
octet to form a nonet. In that case the effective interaction in the Lagrangian
takes the form

Lint =
g1

Aζ√
2fη1

q̄′iXη1qi + O(∂2) (33)

with X = /p and g1
A " g8

A. This symmetry is badly broken in QCD. However
it is reasonable to assume that in these transitions that the form (Eq. (33))
still holds. If one further assumes that the spatial wavefunctions of π and η′

are the approximately equal, one obtains fη′ " fπ. Hence the coefficient ζ
can be set to

√
2/3 both for heavy strange and non strange decaying heavy

mesons.
The situation for decays in which x is a light vector mesons (ρ, ω, K∗) is

different. When compared to the pseudoscalar mesons, they have a different
spin coupling to the quarks (X = /ε where εµ is the polarization vector of the
meson), a different effective coupling (gV #= g8

A), and a different wavefunction
(fρ #= fπ). With these replacements Eq. (32) remains valid for decays with
emission of light vector mesons.2 The detailed study of these vector meson
transitions is deferred to a future paper.

3.2 Partial widths

The partial width for the transition in Eq. (27) (for a light meson x emitted
with total momentum p and angular momentum (x) is given by

Γx(H
′ → H + x; (x) =

p

8π2

2J + 1

2J ′ + 1

mH

mH′

∣∣∣AH′Hx
!x

(X, p)
∣∣∣2 (34)

where mH′ and mH are the masses of the mother and daughter heavy mesons
respectively.

2It is possible to relate these the pseudoscalar and vector couplings and coefficients
within the context of an approximate SU(6)W symmetry for the low lying states.
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H ′ → H + x ζ H ′ → H + x ζ
B0 → B0 + π0 1 Bs → Bs + η8 −2/

√
3

B± → B± + π0 1 Bs → B0 + K
√

2
B± → B0 + π± √

2 Bs → B± + K∓ √
2

B0 → B± + π∓ √
2 B0 → Bs + K̄

√
2

B0 → B0 + η8 1/
√

3 B± → Bs + K± √
2

B± → B± + η8 1/
√

3 Bq → Bq + η1

√
2
3 + O( 1

Nc
)

Table 6: List of decay channels for B (or D) mesons with the corresponding
flavor factor ζ .

The transition mediated by this Lagrangian is associated to the following
matrix element

IH′Hx(p) =
ig8

Aζ√
2fx

∫
Ψn,!,j,J,M(z)Xeip·zΨn′,!′,j′,J ′,M ′(z)d3z (30)

where ζ is a coefficient that characterize the flavor structure of the decay. A
list of all possible cases has been derived from Eq. (29) and is reported in
Table 6. The physical η and η′ are of course mixtures of the ideal η8 and η1.
In particular, η = η8 cos(θp) − η1 sin(θp) where θp ≈ −10.1 deg with a large
uncertainty. In this work we ignore this mixing and we assume θp = 0. The
corrective multiplicative factor for a different choice for θp can be derived by
the reader using Table 6.

The exponential in Eq. (30) can be expanded in products of spherical
harmonics and spherical Bessel functions, thus giving

IH′Hx(p) =
∑

!x,mx

Y !x∗
mx

(p̂)CJ ′,M ′

J,M ;!x,mx
AH′Hx

!x
(X, p) (31)

Eq. (31) implicitly defines the transition amplitude, AH′→Hx
!x

(X, p), for a x
in a given eigenstate %x of its angular momentum. By projecting the matrix
X on the basis presented in the Appendix A, the transition amplitude can
be rewritten as a linear combination of terms, each factorized into a radial
part and a spin dependent part

AH′Hx
!x

(X, p) =
ig8

Aζ√
2fx

∑
ab={0,1}

∑
k

cab,k
!x

(X)

∫ ∞

0

fa
n′,!′,j′(r)jk(rp)f b

n,!,j(r)r
2dr

(32)
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Some partial widths

channel lπ pπ (MeV) Γπ/(g8
A)2(keV)

D"0(1
1

2 S1) → D0(1
1

2 S0) + π0 1 42.8 ± .2 62 ± 1
D"+(1

1

2 S1) → D0(1
1

2 S0) + π+ 1 39.4 ± .5 97 ± 3
D"+(1

1

2 S1) → D+(1
1

2 S0) + π0 1 38.1 ± .3 44 ± 1

Table 7: List of partial decay rates for 1S D mesons. The measured D∗ and
D masses [11] are used in these results.

The total hadronic decay width (via a pseudoscalar meson transition) is
defined simply as the sum of the partial widths:

ΓH′

M =
∑
H

∑
x={π,η8,K}

∑
$x

Γx(H
′ → H + x; "x) (35)

Transitions involving excited states very near their kinematic threshold for
an allowed decay (e.g. where the light pseudoscalar momentum is less than
100 MeV) are extremely sensitive to our calculated mass values. This is
particularly true for the allowed transitions within the 1S multiplets. In
these cases, even the small mass differences between the the charged and
neutral states are important. Using the physical masses for the various D
mesons [11], the individual pion transitions are shown in Table 7.

After removing these phase space uncertainties, reasonable variations in
our model parameters gave variations of about 10% in the overall hadronic
widths. The listed branching ratios with emission of a π are flavor blind
and sum over the final state pion charge (i.e. they have been computed
with ζ =

√
3). Each exclusive decay can be deduced by correcting for this

factor using Table 6 to determine the relative strength of the charged and
neutral decays. In addition, a small phase space correction should be included
appropriate to the slight difference in the masses of the various charge states.
These rates are shown in Table 8 for the D and Ds mesons and in Table 9 for
the B and Bs mesons. For the 1

3

2 P(1,2) Bs states, our model predicts that they

are below threshold for K transitions to the the 1
1

2 S(0,1) B states. However,
this is very sensitive to the details of the model. So, for completeness, we
note the partial rates divided by the appropriate phase space factor at pK = 0
in Table 10.

A list of the allowed transitions for other low-lying excited states is re-
ported in Appendix B.

23

S wave

H ′(n′j′!J ′) H(nj!J) x !x px Γx/(g8
A)2

D(1
1

2 P0) D(1
1

2 S0) π 0 437 189

D(1
3

2 P1) D(1
1

2 S1) π 0 355 (∗) 1.7
D(1

1

2 S1) π 2 355 14.5

D(1
3

2 P2) D(1
1

2 S0) π 2 506 24.6
D(1

1

2 S1) π 2 394 13.7

D(1
1

2 P1) D(1
1

2 S1) π 0 420 181

Ds(1
1

2 P0) D(1
1

2 S0) K 0 325 236

Ds(1
3

2 P1) D(1
1

2 S1) K 0 175 (∗) 1.89
D(1

1

2 S1) K 2 175 0.3

Ds(1
3

2 P2) D(1
1

2 S0) K 2 442 8.9
D(1

1

2 S1) K 2 264 1.4
Ds(1

1

2 S0) η 2 248 0.4

Ds(1
1

2 P1) D(1
1

2 S1) K 0 302 224

Table 8: The heavy-light 1P state hadronic transition rates for D and Ds

mesons. H ′ → H + x. Decays denoted with an (∗) are allowed only because
of the order 1/mh mixing of states. px and Γx/(g8

A)2 are in MeV.

H ′(n′j′!J ′) H(nj!J) x !x px Γx/(g8
A)2

B(1
1

2 P0) B(1
1

2 S0) π 0 388 186

B(1
3

2 P1) B(1
1

2 S1) π 0 338 (∗) 0.5

B(1
1

2 S1) π 2 338 13.1

B(1
3

2 P2) B(1
1

2 S0) π 2 396 10.6
B(1

1

2 S1) π 2 352 9.5

B(1
1

2 P1) B(1
1

2 S1) π 0 381 180

Bs(1
1

2 P0) B(1
1

2 S0) K 0 170 159

Bs(1
1

2 P1) B(1
1

2 S1) K 0 153 143

Table 9: The 1P state hadronic transition rates for B and Bs systems. H ′ →
H + x. Decays denoted with an (∗) are allowed only because of the order
1/mh mixing of states. Values for px and Γx/(g8

A)2 are in MeV.
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P wave

** For expected masses
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3

Figure 3. Spectroscopy scheme for D0,± mesons.

Table 1. Excited [cs̄] meson D∗
SJ (jq). FOCUS preliminary

results.11

Theory PDG FOCUS
D∗

s1(2536)(3/2)
m (MeV) ∼ 2530 2573.3 ± 6 2535.1 ± 0.3
Γ (MeV) < 1 < 2.390%CL 1.6 ± 1

D∗
s2(2573)(3/2)
m (MeV) ∼ 2590 2572.4 ± 1.5 2567.3 ± 1.4
Γ (MeV) 10 − 20 15 ± 5 28 ± 5

clusive invariant mass of D+
s π0. They also noticed

an excess of events at the ∼ 2.46 GeV region of
the D∗(2112)+π0 mass spectrum. This result trig-
gered theoretical12 and experimental activities to un-
derstand, confirm and establish the properties of
the new states. CLEO4 confirmed the D∗

sJ(2317)
and claimed the existence of a new state D∗

sJ(2463)
decaying to D∗(2112)+π0. Belle confirmed these
prior results and observed the radiative decay mode
D∗

sJ(2463) → D+
s γ and a series of exclusive B →

DD∗
sJ , from which they obtained some information

on the spin of the new particles.5

Using Monte Carlo the three experiments ex-
cluded the possibility of any known particle to pro-
duce the observed signals. On the other hand the
two new states are kinetically very similar, both
mass differences ∆MD∗

sJ (2317) ≡ MDsπ0 − MDs and
∆MD∗

sJ (2463) ≡ MD∗
s π0 − MD∗

s
are of the order of

350 MeV. It is possible that D∗
sJ (2317) feeds-up

to D∗
sJ (2463) by the addition of a random pho-

ton consistent with D∗(2112)+ → Dsγ or that the

Figure 4. BaBar signal for D∗
sJ (2317) → D+

s π0 for: a) D+
s →

K+K−π+ for both φπ+ and K̄∗0K+, 1267± 63 events in the
peak; and b) D+

s → K+K−π+π0, 237± 33 events.
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sJ (2463) radiative decay.

form, consistent with 0+;13 and Belle finds the B →
DD∗

sJ (2463),D∗
sJ (2463) → Dsγ exclusive decay he-

licity angle distribution consistent with J = 2.

2.2. Baryons

The spectroscopy of the charm baryons is a lot more
complex and less studied than the meson sector.
SU(4) quark model multiplets are used as a guide
to identify the observed states, and none of the JP

values have been directy measured. Of the single
charm ground states only the Ω∗

0c(JP = 3/2+) re-
mains undetected.

The first observation of the doubly-charmed

Table 2. Mass measurements for D∗
sJ (2317) and D∗

sJ (2463)
states.

BaBar
M(D∗

sJ (2317)) MeV 2316.8 ± 0.4 ± 0.3
M(D∗

sJ (2317)) − M(Ds) MeV 348.4 ± 0.4 ± 0.3
M(D∗

sJ (2463)) MeV 2457.0 ± 1.4 ± 3
M(D∗

sJ (2463)) − M(D∗
s ) MeV 344.6 ± 1.2 ± 3

Belle
M(D∗

sJ (2317)) MeV 2317.2 ± 0.5 ± 0.9
M(D∗

sJ (2317)) − M(Ds) MeV 348.7 ± 0.5 ± 0.7
M(D∗

sJ (2463)) MeV 2456.5 ± 1.3 ± 1.1
M(D∗

sJ (2463)) − M(D∗
s ) MeV 344.1 ± 1.3 ± 0.9

CLEO
M(D∗

sJ (2317)) MeV 2318.5 ± 1.2 ± 1.1±
M(D∗

sJ (2317)) − M(Ds) MeV 350.0 ± 1.2 ± 1.0
M(D∗

sJ (2463)) MeV 2463.6 ± 1.7 ± 1.2
M(D∗

sJ (2463)) − M(D∗
s ) MeV 351.2 ± 1.7 ± 1.0

baryon Ξ+
cc was recently published by SELEX.6 The

SELEX experiment uses a 600 GeV charged hyperon
beam incident on target foils of Cu or diamond. In
the double charm search they look for a secondary
vertex of ΛcK−π+ within their sample of 1630 fully
reconstructed Λc → pKπ events. Their signal is
shown in Fig. 7. It is a 6.3 standard deviation sig-
nal of 15.9 events over an estimated background of
6.1± 0.5 events. The mass is at 3519± 1 MeV iden-
tified as [ccd]+.

SELEX have pursued the search for more dou-
ble charm events by requiring un extra π track on
the secondary vertex, and by imposing helicity cuts.
With limited statistics SELEX presented preliminary
results for 3 more [ccq] candidates.7 It is suggested
that the four candidates are interpreted as the L = 0
and L = 1 [ccd]+ and [ccu]++.

To try and confirm these results the photopro-
duction experiment FOCUS have made extensive
searches in their 19444 ± 262 Λc sample. There was
no evidence for a doubly charmed baryon.14

3. Hadronic Decays

The hadronic decays are responsible for the not so
well understood large differences in the lifetimes be-
tween the charm hadrons (Fig. 1). The leptonic and
semileptonic represent just a small fraction of the to-
tal charm decay width. In the semileptonic decays,
for example, the hadronic complexity can be isolated
in measured form factors. As expected for specta-
tors diagrams, the semileptonic widths for the vari-
ous charm hadrons are comparable. The hadronic
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Adjust the parameters? Cahn and Jackson,PR D68 (2003) 037502 

2

II. SPECTRUM FOR P STATES

We base our analysis on the quasi-static potential, in-
cluding the spin-dependent forces, which computed from
the Lorentz-invariant fermion-antifermion scattering am-

plitude using Feynman diagrams, replacing the vector or
scalar propagators by the Fourier transforms of the pos-
tulated potentials, S(r) and V (r). In this way, neglecting
velocity-dependent, but spin-independent terms, we find

Vquasi−static = V + S +

(
V ′ − S′

r

)
!·

(
σ1

4m2
1

+
σ2

4m2
2

)
+

(
V ′

r

)
!·

(
σ1 + σ2

2m1m2

)

+
1

12m1m2

(
V ′

r
− V ′′

)
S12 +

1

6m1m2
∇2V σ1 ·σ2 (1)

where the tensor force operator is

S12 = 3 σ1 ·r̂ σ2 ·r̂ − σ1 ·σ2. (2)

We imagine solving the corresponding differential
equation with the potential V + S, then computing
the fine structure and hyperfine structure perturbatively.
We work consistently only to order 1/m2. In general,
there are four independent matrix elements to consider,
〈(V ′ − S′)/r〉, 〈V ′/r〉, 〈−V ′′ + V ′/r〉, and 〈∇2V 〉. How-
ever, if V is Coulombic, −V ′′ +V ′/r = 3V ′/r and 〈∇2V 〉
vanishes except for s waves, where it gives a contact in-
teraction. It follows that for Coulombic V and for ! > 0,
there are only two independent matrix elements. Three
measured p-wave masses will give two splittings, which
will determine the matrix elements and allow us to pre-
dict the mass of the fourth p-wave state.

The mass operator for the splittings of the four states
of any multiplet of orbital angular momentum different
from zero can be written (to order 1/m2)[8]

M = λ! · s1 + 4τ! · s2 + τS12 (3)

with the notation

λ =
1

2m2
1

[
V ′

r

(
1 +

2m1

m2

)
− S′

r

]

τ =
1

4m1m2

V ′

r
. (4)

In practice, we shall apply this operator to p-wave states
for the D or Ds system. Henceforth, we will use λ and
τ to indicate the expectation values of the quantities in
Eq. (4). The values of λ and τ will be different for the
D and Ds systems. For the assumed attractive, Coulom-
bic V , the tensor-force energy τ is manifestly positive.
However, the spin-orbit energy λ can be either positive
or negative, depending on the relation between the po-
tentials V and S.

Because there is no single basis that diagonalizes all
the interactions, we need to fix one basis, then calculate
the mixing between the two J = 1 states. We choose the

basis in which j2 is diagonal. The eigenstates |J, j, m〉
of J2, j2 and Jz can be written in terms of eigenstates of
J2, S2, and Jz , or in terms of eigenstates of J2, (j′)2 =
(! + s2)2 and Jz. The details are given in the Appendix.

Up to an additive constant common to the four p-wave
states, the masses of the J = 2 and J = 0 states are

M2 =
λ

2
+

8

5
τ ; M0 = −λ − 8τ (5)

while the masses of the two J = 1 state are obtained by
diagonalizing the matrix in the |J, j, m〉 basis


λ
2 − 8

3 τ − 2
√

2
3 τ

− 2
√

2
3 τ −λ + 8

3 τ


 (6)

The two eigenmasses for J = 1 are then

M1± = −λ

4
±

√
λ2

16
+

1

2
(λ − 4τ)2 (7)

The eigenmasses are shown as functions of λ/τ in Fig. 1.
Also shown is the j = 1/2 fraction of the higher mass
JP = 1+ state. The vertical bands correspond to the-
oretical models and to data, as explained in the next
section.

If we define the mass splittings among three of the four
states,

D2 = M2 − M0

D1 = M1 − M0 (8)

we find

τ =
10

87
D2 − 2

29
D1

±
√(

10

87
D2 − 2

29
D1

)2

+
5

232
(D2

1 − D1D2)

λ =
2

3
D2 − 32

5
τ (9)

A very strong scalar potential S leads to “inversion,”
namely the j = 1/2 states lying above the j = 3/2 states.
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3

III. APPLICATION TO THE D AND Ds

SYSTEMS

Using the formulae of the preceding Section, we can
use the measured masses of three p-wave states to predict
the fourth. Alternatively, we can take three masses that
are predicted theoretically and confirm that we find the
fourth predicted mass. Applying this to the D and Ds

systems as given in Ref. [7] we indeed find congruence
and determine the values of λ and τ shown in Table I.
The leftmost vertical bar in Fig. 1 indicates the range
found in Ref. [7]. The negative value of λ is indicative of
inversion.

The result of inversion is that the higher-mass JP = 1+

state actually lies above the 2+ state. This prediction is
contradicted by the reports from Belle [11] of JP = 1+

state at 2.400 GeV. Using the well established D states at
2.459 GeV and 2.422 GeV, and the reported JP = 0+ at
2.290 GeV in our Eq. (3) leads to two solutions, labeled
A and B in Table I. Both give masses near the observed
state at 2.400 GeV. From the lower graph in Fig. 1 we
see that the solution with the higher value of λ/τ results
in the higher-mass JP = 1+ state (2.422 GeV) being
nearly entirely j = 3/2, while the lower value (Solution
A), would give it nearly equal contributions from j = 1/2
and j = 3/2.

We can differentiate between the two solutions, both
for D and Ds by considering the widths. The exper-
imental widths and theoretical estimates are shown in
Table II. The theoretical estimates are obtained from

FIG. 1: Upper: the energy-levels for the four p-wave states
as a function of the ratio of the spin-orbit to tensor energies,
in units of the tensor energy. Lower: the percentage of the
more massive JP = 1+ state that comes from the j = 1/2
state. The D masses are from [10, 11] and the Ds masses
from [9, 10].

TABLE I: Masses of the various p-wave states in the D and
Ds systems and the spin-orbit and tensor energies. The ex-
perimental masses for the D states at 2.400 GeV and 2.290
GeV are from Ref. [11]. The mass of the Ds state at 2.317
GeV is from Ref. [9]. The values of λ and τ for Ref. [7] were
obtained by fitting their mass spectrum with the ansatz of
Eq. 3. The square brackets indicate values that were used as
inputs to the fits that determined the remaining mass and the
values of λ and τ . At the time of Ref. [7] only the masses of
the 2+ states and the D1(2420) and Ds1(2535) were known.

Exp. Theory
Ref. [9–11] Sol. A Sol. B Ref. [7]

D mesons
M(2+)(GeV) 2.459 [2.459] [2.459] 2.460
M(1+)(GeV) 2.400 2.400 2.385 2.490
M(1+)(GeV) 2.422 [2.422] [2.422] 2.417
M(0+)(GeV) 2.290 [2.290] [2.290] 2.377
λ (MeV) 39 54 −11
τ (MeV) 11 9 11
Ds mesons
M(2+)(GeV) 2.572 [2.572] [2.572] 2.581
M(1+)(GeV) 2.480 2.408 2.605
M(1+)(GeV) 2.536 [2.536] [2.536] 2.535
M(0+)(GeV) 2.317 [2.317] [2.317] 2.487
λ (MeV) 43 115 −7
τ (MeV) 20 9 11

TABLE II: Decay widths of p-wave D and Ds states in
MeV. The theoretical values are derived from [7] using phase-
space corrections to adjust for the masses known now. The
widths shown for the D∗

2(2460) states are obtained from
the total width of 23 ± 5 0− and the measured [10] ratio
Γ(D+π−)/Γ(D∗+π−) = 2.3±0.6. For the DsJ (2573) we have
assigned the entire width to the decay to D(1865)K since the
decay to D∗(2007)K has not been seen.

Exp. Theory:
[10, 11] s-wave d-wave

D mesons
D∗

2(2460) → D(1865)π 16 ± 4 16
D∗

2(2460) → D∗(2007)π 7 ± 3 9
D1(2422) → D∗(2007)π 18.9+4.6

−3.5
90 10

D1(2400) → D∗(2007)π 380 ± 100 ± 100 100
D∗

0(2290) 305 ± 30 ± 25 100
Ds mesons
D∗

2(2573) → D(1865)K 15+5

−4
9

D∗

2(2573) → D∗(2007)K − 1.4
D1(2535) → D∗(2007)K < 2.3 100 0.3

[7] after making phase-space corrections. The widths for
s-wave and d-wave decay are shown separately for the
JP = 1+ states. The proper combination depends on
the mixing of the j = 3/2 and j = 1/2 states.

Referring to Fig. 1 and Table I, we see that the model
of [7], which has λ < 0, has the J = 1 state that is nearly
pure j = 1/2 above the J = 2 state. The lower J = 1
state is identified with the D1(2420). Because it is nearly
entirely j = 3/2 its decay by pion emission must be d-

Result:
Best fit for masses has 
problems with widths.
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What’s missing?

Heavy quark-antiquark systems gluons adjust quickly relative to the quark 
motion. In fact, this static energy can be measured in Lattice QCD. 

As one quark becomes light, this is no longer true.  The “string” degrees of 
freedom need to be included.  Not just the energy but also the angular 

momentum Bardeen, WIN03

An alternative approach
Imagine chiral symmetry and confinement could coexist.    

Ignore explicit chiral symmetry breaking terms. Then 
light hadrons could become massless but heavy-light 

systems are forced to remain massive.

Heavy-Light states would be parity doubled.

How far away is QCD from this point?

Nowak, Rho and Zahed, PR D48 (1993) 4370
Bardeen and Hill, PR D49 (1994) 409

Chiral Dynamics
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Bardeen, EE and Hill PRD68 (2004)  054024
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Chiral Multiplets of Heavy-Light Mesons Bardeen, EE and Hill, PR D68 (2003) 054024

Heavy quark multiplet notation:

HQS states Chiral states

Properties of ground S wave states and orbital excited P wave 
states with the same                are related.

Armed with these ideas the full 
effective lagrangian can be 

deduced.
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3

where we have included U(1)A breaking effects through
a ‘t Hooft determinant term. The field Σ is a 3 × 3
complex matrix. The imaginary components of Σ are the
0− nonet, including π, K, η, η′, while the real components
form a 0+ nonet.

In the chiral symmetric phase, 〈Σ〉 = 0, and the 0+ and
0− octets are degenerate, forming a massive parity dou-
bled nonet. When the chiral symmetry is spontaneously
broken, 〈Σ〉 = I3fπ and the 0+ nonet becomes heavy,
while the 0− octet becomes a set of massless Goldstone
bosons, the η′ receiving a nonzero mass from the ‘t Hooft
determinant.

In the broken symmetry phase we can write:

Σ = ξσ̃ξ ξ = exp(iπ · λ/2fπ) (7)

where the 0+ nonet field is:

σ̃ =

√
2

3
σI3 + σaλa (8)

and 〈σ〉 =
√

3/2fπ. If we then take the 0+ nonet mass
to infinity, holding fπ fixed, we can decribe the octet of
pseudoscalar mesons in the nonlinear Σ-model:

Σ = fπ exp(iπa · λa/fπ) (9)

Note that fπ = 93.3 MeV in this normalization. The
nonlinear chiral Lagrangian takes the form:

LL =
1

4
Tr(∂µΣ†∂µΣ) +

1

2
κ Tr(MqΣ + h.c.) (10)

where κ = fπm2
π/(mu+md) fits the meson masses, yield-

ing the Gell-Mann–Okubo formula. The expansion of the
mass term in the meson fields to quadratic order yields
an isospin violating π0 η mixing term that we will require
later:

LL = ... +
m2

π(mu − md)√
3(mu + md)

π0η (11)

We now write an effective Lagrangian involving both
the HL mesons and the Σ field, implementing HQ sym-
metry and chiral symmetry. The lowest order effective
Lagrangian to first order in an expansion in the chiral
field Σ, and to zeroth order in (1/mQ) is [4]:

LLH = −i
1

2
Tr(HLv · ∂HL) − i

1

2
Tr(HRv · ∂HR)

−gπ

4

[
Tr(HLΣ†HR) + Tr(HRΣHL)

]
−∆

(
Tr(HLHL) + Tr(HRHR)

)
+i

gA

2fπ

[
Tr(HLγ5(∂/ Σ†)HR) − Tr(HRγ5(∂/ Σ)HL)

]
+ ... (12)

The ∆ term can be “gauged away” by a reparameteriza-
tion transformation on the fields, so we henceforth drop
it.

Terms can be added at first order in (1/mQ) to accomo-
date the intramultiplet hyperfine mass splitting effects:

L0,hyperfine =

Λ2
QCD

12mQ

[
k1 Tr(HLσµνHLσµν) + k2 Tr(HRσµνHRσµν)

]
(13)

Parity symmetry implies invariance under L ↔ R, and
Σ ↔ Σ† hence:

k ≡ k1 = k2 (14)

There are additional terms of order 1/mQ, such as
Tr(HL(v · ∂)2HL) + (L ↔ R).

The hyperfine splitting effects to first order in Σ and
first order in 1/mQ are LR transition terms of the form:

L1,hyperfine =
k′Λ2

QCD

12mQfπ

[
Tr(HLσµνΣ†HRσµν) + h.c.

]
(15)

Since these terms are overall second order effects we ex-
pect them to be small k′ << k.

We can perform redefinitions of the heavy fields to
bring them into linear flavor SU(3) representations in
the parity eigenbasis:

HL =
1√
2
ξ†(H − iH′) HR =

1√
2
ξ(H + iH′) (16)

and the Lagrangian now takes the form:

LLH = −1

2
Tr(Hv · (i∂ + V)H) − 1

2
Tr(H′v · (i∂ + V)H′)

+i
1

2
GA Tr(H′v · AH) − i

1

2
GA Tr(Hv · AH′)

+
gπ

4

[
Tr(H′σ̃H′) − Tr(Hσ̃H)

]
+

gA

2fπ

[
Tr(H′

γ5γµ{Aµ, σ̃}H′) − Tr(Hγ5γµ{Aµ, σ̃}H)
]

+
gA

2fπ
Tr(H′

γ5γµ(∂µσ̃ − i[Vµ, σ̃])H)

+
gA

2fπ
Tr(Hγ5γµ(∂µσ̃ − i[Vµ, σ̃])H′)

+ ... (17)

where:

Vµ =
1

2
(ξ†∂µξ + ξ∂µξ†) =

i

8f2
π

[π̃, ∂µπ̃] + ... (18)

Aµ = i
1

2
(ξ†∂µξ − ξ∂µξ†) = − 1

2fπ
∂µπ̃ + ... (19)

where π̃ =
√

2/3 η′ + πaλa. We have introduced a phe-
nomenological parameter GA, that is unity in lowest or-
der model of eq.(12), but that can, in principle, receive
corrections.
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where we have included U(1)A breaking effects through
a ‘t Hooft determinant term. The field Σ is a 3 × 3
complex matrix. The imaginary components of Σ are the
0− nonet, including π, K, η, η′, while the real components
form a 0+ nonet.

In the chiral symmetric phase, 〈Σ〉 = 0, and the 0+ and
0− octets are degenerate, forming a massive parity dou-
bled nonet. When the chiral symmetry is spontaneously
broken, 〈Σ〉 = I3fπ and the 0+ nonet becomes heavy,
while the 0− octet becomes a set of massless Goldstone
bosons, the η′ receiving a nonzero mass from the ‘t Hooft
determinant.

In the broken symmetry phase we can write:

Σ = ξσ̃ξ ξ = exp(iπ · λ/2fπ) (7)

where the 0+ nonet field is:

σ̃ =

√
2

3
σI3 + σaλa (8)

and 〈σ〉 =
√

3/2fπ. If we then take the 0+ nonet mass
to infinity, holding fπ fixed, we can decribe the octet of
pseudoscalar mesons in the nonlinear Σ-model:

Σ = fπ exp(iπa · λa/fπ) (9)

Note that fπ = 93.3 MeV in this normalization. The
nonlinear chiral Lagrangian takes the form:

LL =
1

4
Tr(∂µΣ†∂µΣ) +

1

2
κ Tr(MqΣ + h.c.) (10)

where κ = fπm2
π/(mu+md) fits the meson masses, yield-

ing the Gell-Mann–Okubo formula. The expansion of the
mass term in the meson fields to quadratic order yields
an isospin violating π0 η mixing term that we will require
later:

LL = ... +
m2

π(mu − md)√
3(mu + md)

π0η (11)

We now write an effective Lagrangian involving both
the HL mesons and the Σ field, implementing HQ sym-
metry and chiral symmetry. The lowest order effective
Lagrangian to first order in an expansion in the chiral
field Σ, and to zeroth order in (1/mQ) is [4]:

LLH = −i
1

2
Tr(HLv · ∂HL) − i

1

2
Tr(HRv · ∂HR)

−gπ

4

[
Tr(HLΣ†HR) + Tr(HRΣHL)

]
−∆

(
Tr(HLHL) + Tr(HRHR)

)
+i

gA

2fπ

[
Tr(HLγ5(∂/ Σ†)HR) − Tr(HRγ5(∂/ Σ)HL)

]
+ ... (12)

The ∆ term can be “gauged away” by a reparameteriza-
tion transformation on the fields, so we henceforth drop
it.

Terms can be added at first order in (1/mQ) to accomo-
date the intramultiplet hyperfine mass splitting effects:

L0,hyperfine =

Λ2
QCD

12mQ

[
k1 Tr(HLσµνHLσµν) + k2 Tr(HRσµνHRσµν)

]
(13)

Parity symmetry implies invariance under L ↔ R, and
Σ ↔ Σ† hence:

k ≡ k1 = k2 (14)

There are additional terms of order 1/mQ, such as
Tr(HL(v · ∂)2HL) + (L ↔ R).

The hyperfine splitting effects to first order in Σ and
first order in 1/mQ are LR transition terms of the form:

L1,hyperfine =
k′Λ2

QCD

12mQfπ

[
Tr(HLσµνΣ†HRσµν) + h.c.

]
(15)

Since these terms are overall second order effects we ex-
pect them to be small k′ << k.

We can perform redefinitions of the heavy fields to
bring them into linear flavor SU(3) representations in
the parity eigenbasis:

HL =
1√
2
ξ†(H − iH′) HR =

1√
2
ξ(H + iH′) (16)

and the Lagrangian now takes the form:

LLH = −1

2
Tr(Hv · (i∂ + V)H) − 1

2
Tr(H′v · (i∂ + V)H′)

+i
1

2
GA Tr(H′v · AH) − i

1

2
GA Tr(Hv · AH′)

+
gπ

4

[
Tr(H′σ̃H′) − Tr(Hσ̃H)

]
+

gA

2fπ

[
Tr(H′

γ5γµ{Aµ, σ̃}H′) − Tr(Hγ5γµ{Aµ, σ̃}H)
]

+
gA

2fπ
Tr(H′

γ5γµ(∂µσ̃ − i[Vµ, σ̃])H)

+
gA
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Tr(Hγ5γµ(∂µσ̃ − i[Vµ, σ̃])H′)

+ ... (17)

where:

Vµ =
1

2
(ξ†∂µξ + ξ∂µξ†) =

i

8f2
π

[π̃, ∂µπ̃] + ... (18)

Aµ = i
1

2
(ξ†∂µξ − ξ∂µξ†) = − 1

2fπ
∂µπ̃ + ... (19)

where π̃ =
√

2/3 η′ + πaλa. We have introduced a phe-
nomenological parameter GA, that is unity in lowest or-
der model of eq.(12), but that can, in principle, receive
corrections.
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where we have included U(1)A breaking effects through
a ‘t Hooft determinant term. The field Σ is a 3 × 3
complex matrix. The imaginary components of Σ are the
0− nonet, including π, K, η, η′, while the real components
form a 0+ nonet.

In the chiral symmetric phase, 〈Σ〉 = 0, and the 0+ and
0− octets are degenerate, forming a massive parity dou-
bled nonet. When the chiral symmetry is spontaneously
broken, 〈Σ〉 = I3fπ and the 0+ nonet becomes heavy,
while the 0− octet becomes a set of massless Goldstone
bosons, the η′ receiving a nonzero mass from the ‘t Hooft
determinant.

In the broken symmetry phase we can write:

Σ = ξσ̃ξ ξ = exp(iπ · λ/2fπ) (7)

where the 0+ nonet field is:

σ̃ =

√
2

3
σI3 + σaλa (8)

and 〈σ〉 =
√

3/2fπ. If we then take the 0+ nonet mass
to infinity, holding fπ fixed, we can decribe the octet of
pseudoscalar mesons in the nonlinear Σ-model:

Σ = fπ exp(iπa · λa/fπ) (9)

Note that fπ = 93.3 MeV in this normalization. The
nonlinear chiral Lagrangian takes the form:

LL =
1

4
Tr(∂µΣ†∂µΣ) +

1

2
κ Tr(MqΣ + h.c.) (10)

where κ = fπm2
π/(mu+md) fits the meson masses, yield-

ing the Gell-Mann–Okubo formula. The expansion of the
mass term in the meson fields to quadratic order yields
an isospin violating π0 η mixing term that we will require
later:

LL = ... +
m2

π(mu − md)√
3(mu + md)

π0η (11)

We now write an effective Lagrangian involving both
the HL mesons and the Σ field, implementing HQ sym-
metry and chiral symmetry. The lowest order effective
Lagrangian to first order in an expansion in the chiral
field Σ, and to zeroth order in (1/mQ) is [4]:

LLH = −i
1

2
Tr(HLv · ∂HL) − i

1

2
Tr(HRv · ∂HR)

−gπ

4

[
Tr(HLΣ†HR) + Tr(HRΣHL)

]
−∆

(
Tr(HLHL) + Tr(HRHR)

)
+i

gA

2fπ

[
Tr(HLγ5(∂/ Σ†)HR) − Tr(HRγ5(∂/ Σ)HL)

]
+ ... (12)

The ∆ term can be “gauged away” by a reparameteriza-
tion transformation on the fields, so we henceforth drop
it.

Terms can be added at first order in (1/mQ) to accomo-
date the intramultiplet hyperfine mass splitting effects:

L0,hyperfine =

Λ2
QCD

12mQ

[
k1 Tr(HLσµνHLσµν) + k2 Tr(HRσµνHRσµν)

]
(13)

Parity symmetry implies invariance under L ↔ R, and
Σ ↔ Σ† hence:

k ≡ k1 = k2 (14)

There are additional terms of order 1/mQ, such as
Tr(HL(v · ∂)2HL) + (L ↔ R).

The hyperfine splitting effects to first order in Σ and
first order in 1/mQ are LR transition terms of the form:

L1,hyperfine =
k′Λ2

QCD

12mQfπ

[
Tr(HLσµνΣ†HRσµν) + h.c.

]
(15)

Since these terms are overall second order effects we ex-
pect them to be small k′ << k.

We can perform redefinitions of the heavy fields to
bring them into linear flavor SU(3) representations in
the parity eigenbasis:

HL =
1√
2
ξ†(H − iH′) HR =

1√
2
ξ(H + iH′) (16)

and the Lagrangian now takes the form:

LLH = −1

2
Tr(Hv · (i∂ + V)H) − 1

2
Tr(H′v · (i∂ + V)H′)

+i
1

2
GA Tr(H′v · AH) − i

1

2
GA Tr(Hv · AH′)

+
gπ

4

[
Tr(H′σ̃H′) − Tr(Hσ̃H)

]
+

gA

2fπ

[
Tr(H′

γ5γµ{Aµ, σ̃}H′) − Tr(Hγ5γµ{Aµ, σ̃}H)
]

+
gA

2fπ
Tr(H′

γ5γµ(∂µσ̃ − i[Vµ, σ̃])H)

+
gA

2fπ
Tr(Hγ5γµ(∂µσ̃ − i[Vµ, σ̃])H′)

+ ... (17)

where:

Vµ =
1

2
(ξ†∂µξ + ξ∂µξ†) =

i

8f2
π

[π̃, ∂µπ̃] + ... (18)

Aµ = i
1

2
(ξ†∂µξ − ξ∂µξ†) = − 1

2fπ
∂µπ̃ + ... (19)

where π̃ =
√

2/3 η′ + πaλa. We have introduced a phe-
nomenological parameter GA, that is unity in lowest or-
der model of eq.(12), but that can, in principle, receive
corrections.
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Include heavy-light mesons
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where we have included U(1)A breaking effects through
a ‘t Hooft determinant term. The field Σ is a 3 × 3
complex matrix. The imaginary components of Σ are the
0− nonet, including π, K, η, η′, while the real components
form a 0+ nonet.

In the chiral symmetric phase, 〈Σ〉 = 0, and the 0+ and
0− octets are degenerate, forming a massive parity dou-
bled nonet. When the chiral symmetry is spontaneously
broken, 〈Σ〉 = I3fπ and the 0+ nonet becomes heavy,
while the 0− octet becomes a set of massless Goldstone
bosons, the η′ receiving a nonzero mass from the ‘t Hooft
determinant.

In the broken symmetry phase we can write:

Σ = ξσ̃ξ ξ = exp(iπ · λ/2fπ) (7)

where the 0+ nonet field is:

σ̃ =

√
2

3
σI3 + σaλa (8)

and 〈σ〉 =
√

3/2fπ. If we then take the 0+ nonet mass
to infinity, holding fπ fixed, we can decribe the octet of
pseudoscalar mesons in the nonlinear Σ-model:

Σ = fπ exp(iπa · λa/fπ) (9)

Note that fπ = 93.3 MeV in this normalization. The
nonlinear chiral Lagrangian takes the form:

LL =
1

4
Tr(∂µΣ†∂µΣ) +

1

2
κ Tr(MqΣ + h.c.) (10)

where κ = fπm2
π/(mu+md) fits the meson masses, yield-

ing the Gell-Mann–Okubo formula. The expansion of the
mass term in the meson fields to quadratic order yields
an isospin violating π0 η mixing term that we will require
later:

LL = ... +
m2

π(mu − md)√
3(mu + md)

π0η (11)

We now write an effective Lagrangian involving both
the HL mesons and the Σ field, implementing HQ sym-
metry and chiral symmetry. The lowest order effective
Lagrangian to first order in an expansion in the chiral
field Σ, and to zeroth order in (1/mQ) is [4]:

LLH = −i
1

2
Tr(HLv · ∂HL) − i

1

2
Tr(HRv · ∂HR)

−gπ

4

[
Tr(HLΣ†HR) + Tr(HRΣHL)

]
−∆

(
Tr(HLHL) + Tr(HRHR)

)
+i

gA

2fπ

[
Tr(HLγ5(∂/ Σ†)HR) − Tr(HRγ5(∂/ Σ)HL)

]
+ ... (12)

The ∆ term can be “gauged away” by a reparameteriza-
tion transformation on the fields, so we henceforth drop
it.

Terms can be added at first order in (1/mQ) to accomo-
date the intramultiplet hyperfine mass splitting effects:

L0,hyperfine =

Λ2
QCD

12mQ

[
k1 Tr(HLσµνHLσµν) + k2 Tr(HRσµνHRσµν)

]
(13)

Parity symmetry implies invariance under L ↔ R, and
Σ ↔ Σ† hence:

k ≡ k1 = k2 (14)

There are additional terms of order 1/mQ, such as
Tr(HL(v · ∂)2HL) + (L ↔ R).

The hyperfine splitting effects to first order in Σ and
first order in 1/mQ are LR transition terms of the form:

L1,hyperfine =
k′Λ2

QCD

12mQfπ

[
Tr(HLσµνΣ†HRσµν) + h.c.

]
(15)

Since these terms are overall second order effects we ex-
pect them to be small k′ << k.

We can perform redefinitions of the heavy fields to
bring them into linear flavor SU(3) representations in
the parity eigenbasis:

HL =
1√
2
ξ†(H − iH′) HR =

1√
2
ξ(H + iH′) (16)

and the Lagrangian now takes the form:

LLH = −1

2
Tr(Hv · (i∂ + V)H) − 1

2
Tr(H′v · (i∂ + V)H′)

+i
1

2
GA Tr(H′v · AH) − i

1

2
GA Tr(Hv · AH′)

+
gπ

4

[
Tr(H′σ̃H′) − Tr(Hσ̃H)

]
+

gA

2fπ

[
Tr(H′

γ5γµ{Aµ, σ̃}H′) − Tr(Hγ5γµ{Aµ, σ̃}H)
]

+
gA

2fπ
Tr(H′

γ5γµ(∂µσ̃ − i[Vµ, σ̃])H)

+
gA

2fπ
Tr(Hγ5γµ(∂µσ̃ − i[Vµ, σ̃])H′)

+ ... (17)

where:

Vµ =
1

2
(ξ†∂µξ + ξ∂µξ†) =

i

8f2
π

[π̃, ∂µπ̃] + ... (18)

Aµ = i
1

2
(ξ†∂µξ − ξ∂µξ†) = − 1

2fπ
∂µπ̃ + ... (19)

where π̃ =
√

2/3 η′ + πaλa. We have introduced a phe-
nomenological parameter GA, that is unity in lowest or-
der model of eq.(12), but that can, in principle, receive
corrections.
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where we have included U(1)A breaking effects through
a ‘t Hooft determinant term. The field Σ is a 3 × 3
complex matrix. The imaginary components of Σ are the
0− nonet, including π, K, η, η′, while the real components
form a 0+ nonet.

In the chiral symmetric phase, 〈Σ〉 = 0, and the 0+ and
0− octets are degenerate, forming a massive parity dou-
bled nonet. When the chiral symmetry is spontaneously
broken, 〈Σ〉 = I3fπ and the 0+ nonet becomes heavy,
while the 0− octet becomes a set of massless Goldstone
bosons, the η′ receiving a nonzero mass from the ‘t Hooft
determinant.

In the broken symmetry phase we can write:

Σ = ξσ̃ξ ξ = exp(iπ · λ/2fπ) (7)

where the 0+ nonet field is:

σ̃ =

√
2

3
σI3 + σaλa (8)

and 〈σ〉 =
√

3/2fπ. If we then take the 0+ nonet mass
to infinity, holding fπ fixed, we can decribe the octet of
pseudoscalar mesons in the nonlinear Σ-model:

Σ = fπ exp(iπa · λa/fπ) (9)

Note that fπ = 93.3 MeV in this normalization. The
nonlinear chiral Lagrangian takes the form:

LL =
1

4
Tr(∂µΣ†∂µΣ) +

1

2
κ Tr(MqΣ + h.c.) (10)

where κ = fπm2
π/(mu+md) fits the meson masses, yield-

ing the Gell-Mann–Okubo formula. The expansion of the
mass term in the meson fields to quadratic order yields
an isospin violating π0 η mixing term that we will require
later:

LL = ... +
m2

π(mu − md)√
3(mu + md)

π0η (11)

We now write an effective Lagrangian involving both
the HL mesons and the Σ field, implementing HQ sym-
metry and chiral symmetry. The lowest order effective
Lagrangian to first order in an expansion in the chiral
field Σ, and to zeroth order in (1/mQ) is [4]:

LLH = −i
1

2
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2
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−gπ

4

[
Tr(HLΣ†HR) + Tr(HRΣHL)
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[
Tr(HLγ5(∂/ Σ†)HR) − Tr(HRγ5(∂/ Σ)HL)

]
+ ... (12)

The ∆ term can be “gauged away” by a reparameteriza-
tion transformation on the fields, so we henceforth drop
it.

Terms can be added at first order in (1/mQ) to accomo-
date the intramultiplet hyperfine mass splitting effects:

L0,hyperfine =
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12mQ

[
k1 Tr(HLσµνHLσµν) + k2 Tr(HRσµνHRσµν)

]
(13)

Parity symmetry implies invariance under L ↔ R, and
Σ ↔ Σ† hence:

k ≡ k1 = k2 (14)

There are additional terms of order 1/mQ, such as
Tr(HL(v · ∂)2HL) + (L ↔ R).

The hyperfine splitting effects to first order in Σ and
first order in 1/mQ are LR transition terms of the form:
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k′Λ2

QCD

12mQfπ

[
Tr(HLσµνΣ†HRσµν) + h.c.

]
(15)

Since these terms are overall second order effects we ex-
pect them to be small k′ << k.

We can perform redefinitions of the heavy fields to
bring them into linear flavor SU(3) representations in
the parity eigenbasis:

HL =
1√
2
ξ†(H − iH′) HR =

1√
2
ξ(H + iH′) (16)

and the Lagrangian now takes the form:

LLH = −1
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Tr(Hv · (i∂ + V)H) − 1

2
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1
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]

+
gA

2fπ
Tr(H′
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+
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where:
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2
(ξ†∂µξ + ξ∂µξ†) =
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[π̃, ∂µπ̃] + ... (18)

Aµ = i
1

2
(ξ†∂µξ − ξ∂µξ†) = − 1

2fπ
∂µπ̃ + ... (19)

where π̃ =
√

2/3 η′ + πaλa. We have introduced a phe-
nomenological parameter GA, that is unity in lowest or-
der model of eq.(12), but that can, in principle, receive
corrections.

3

where we have included U(1)A breaking effects through
a ‘t Hooft determinant term. The field Σ is a 3 × 3
complex matrix. The imaginary components of Σ are the
0− nonet, including π, K, η, η′, while the real components
form a 0+ nonet.

In the chiral symmetric phase, 〈Σ〉 = 0, and the 0+ and
0− octets are degenerate, forming a massive parity dou-
bled nonet. When the chiral symmetry is spontaneously
broken, 〈Σ〉 = I3fπ and the 0+ nonet becomes heavy,
while the 0− octet becomes a set of massless Goldstone
bosons, the η′ receiving a nonzero mass from the ‘t Hooft
determinant.

In the broken symmetry phase we can write:

Σ = ξσ̃ξ ξ = exp(iπ · λ/2fπ) (7)

where the 0+ nonet field is:

σ̃ =

√
2

3
σI3 + σaλa (8)

and 〈σ〉 =
√

3/2fπ. If we then take the 0+ nonet mass
to infinity, holding fπ fixed, we can decribe the octet of
pseudoscalar mesons in the nonlinear Σ-model:

Σ = fπ exp(iπa · λa/fπ) (9)

Note that fπ = 93.3 MeV in this normalization. The
nonlinear chiral Lagrangian takes the form:

LL =
1

4
Tr(∂µΣ†∂µΣ) +

1

2
κ Tr(MqΣ + h.c.) (10)

where κ = fπm2
π/(mu+md) fits the meson masses, yield-

ing the Gell-Mann–Okubo formula. The expansion of the
mass term in the meson fields to quadratic order yields
an isospin violating π0 η mixing term that we will require
later:

LL = ... +
m2

π(mu − md)√
3(mu + md)

π0η (11)

We now write an effective Lagrangian involving both
the HL mesons and the Σ field, implementing HQ sym-
metry and chiral symmetry. The lowest order effective
Lagrangian to first order in an expansion in the chiral
field Σ, and to zeroth order in (1/mQ) is [4]:

LLH = −i
1

2
Tr(HLv · ∂HL) − i

1

2
Tr(HRv · ∂HR)

−gπ

4

[
Tr(HLΣ†HR) + Tr(HRΣHL)

]
−∆

(
Tr(HLHL) + Tr(HRHR)

)
+i

gA

2fπ

[
Tr(HLγ5(∂/ Σ†)HR) − Tr(HRγ5(∂/ Σ)HL)

]
+ ... (12)

The ∆ term can be “gauged away” by a reparameteriza-
tion transformation on the fields, so we henceforth drop
it.

Terms can be added at first order in (1/mQ) to accomo-
date the intramultiplet hyperfine mass splitting effects:

L0,hyperfine =

Λ2
QCD

12mQ

[
k1 Tr(HLσµνHLσµν) + k2 Tr(HRσµνHRσµν)

]
(13)

Parity symmetry implies invariance under L ↔ R, and
Σ ↔ Σ† hence:

k ≡ k1 = k2 (14)

There are additional terms of order 1/mQ, such as
Tr(HL(v · ∂)2HL) + (L ↔ R).

The hyperfine splitting effects to first order in Σ and
first order in 1/mQ are LR transition terms of the form:

L1,hyperfine =
k′Λ2

QCD

12mQfπ

[
Tr(HLσµνΣ†HRσµν) + h.c.

]
(15)

Since these terms are overall second order effects we ex-
pect them to be small k′ << k.

We can perform redefinitions of the heavy fields to
bring them into linear flavor SU(3) representations in
the parity eigenbasis:

HL =
1√
2
ξ†(H − iH′) HR =

1√
2
ξ(H + iH′) (16)

and the Lagrangian now takes the form:

LLH = −1

2
Tr(Hv · (i∂ + V)H) − 1

2
Tr(H′v · (i∂ + V)H′)

+i
1

2
GA Tr(H′v · AH) − i

1

2
GA Tr(Hv · AH′)

+
gπ

4

[
Tr(H′σ̃H′) − Tr(Hσ̃H)

]
+

gA

2fπ

[
Tr(H′

γ5γµ{Aµ, σ̃}H′) − Tr(Hγ5γµ{Aµ, σ̃}H)
]
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2fπ
Tr(H′

γ5γµ(∂µσ̃ − i[Vµ, σ̃])H)

+
gA

2fπ
Tr(Hγ5γµ(∂µσ̃ − i[Vµ, σ̃])H′)

+ ... (17)

where:

Vµ =
1

2
(ξ†∂µξ + ξ∂µξ†) =

i

8f2
π

[π̃, ∂µπ̃] + ... (18)

Aµ = i
1

2
(ξ†∂µξ − ξ∂µξ†) = − 1

2fπ
∂µπ̃ + ... (19)

where π̃ =
√

2/3 η′ + πaλa. We have introduced a phe-
nomenological parameter GA, that is unity in lowest or-
der model of eq.(12), but that can, in principle, receive
corrections.
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In this limit, therefore, a heavy-light heavy-spin (0−, 1−) multiplet must become degener-

ate with a (0+, 1+) multiplet, forming a single chiral-heavy-spin supermultiplet. To describe

this we would have to introduce four independent heavy meson fields, HP (HS) are 0− (0+)

scalars, while Hµ
V (Hµ

A) are 1− (1+) vectors. Heavy quark symmetry is implemented in

the usual way by constructing multiplets for a fixed four–velocity supersector, vµ. We can

assemble these four fields together into a single chiral supermultiplet field:

H = (HS + γ5HP + γµH
µ
V + γ5γµH

µ
A)

(
1 + v/

2
√

2

)
(1)

The chiral projections of these fields HL,R = (1 ± γ5)H/2 transform as (3, 1) and (1, 3)

under SU(3)L × SU(3)R. This field can provide a complete description of the goundstate

heavy-light mesons, and the 1P partners. The 1P partners of the DS mesons are the states

discovered last year by BABAR. We also introduce a second chiral–heavy-spin supermultiplet

to describe the Jp = (1/2) radial excitations:

H′ =
(
H ′

S + γ5H ′
P + γµH

′µ
V + γ5γµH

′µ
A

) (
1 + v/

2
√

2

)
(2)

This supermultiplet contains both the radially excited 2S (0−, 1−) states and the 2P (0+, 1+)

states that form the parity doubling partners. It is the 1− state in this supermultiplet that

we will argue has been observed by the SELEX collaboration.

The center of mass of the K supermultiplet is elevated relative to H supermultiplet by

a chiral symmetric mass gap ∆, which reflects the excitation spectrum of the 2S relative

to the 1S groundstate. The mass gaps within the (0−, 1−) and (0+, 1+) heavy spin multi-

plets contained in H and K are the familiar hyperfine splitting effects and scale as 1/mcharm

in the D meson system. Neglecting mixing between the supermultiplets, the mass gaps

between the (0−, 1−) and (0+, 1+) states contained in H and K are controlled by sponta-

neous chiral symmetry breaking. That is, turning on the chiral symmetry breaking the

physical masses of the scalars and vectors in the H (K) supermultiplet are elevated by the

amount +g̃(H)
π fπ/2, (+g̃(K)

π fπ/2) while the pseudoscalar and vector members are depressed

by −g̃(H)
π fπ/2, (−g̃(K)

π fπ/2). A Goldberger-Treiman relation is therefore obtained relating

the mass differences to the coupling constants for the two multiplets:

∆MH = g̃(H)
π fπ ∆MK = g̃(K)

π fπ (3)

∆MH is the mass difference between the multiplets which is now measured to be 348 MeV.
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involving the U(1)A transition. Since U(1)A is broken explicitly in QCD by the axial

anomaly, we have no reason to identify g′′A with g′A, and we might expect these to be com-

parable.

The produced η and η′ are virtual, decaying into their own final states. The respective

widths are estimated as:

Γ(Ds(2630)→ Ds(0
−) + η → xxx) =

Γ(Ds(2630)→ Ds(0
−) + η′ → xxx) =

(11)

The interaction of eq.(9) predicts the strange-to-non-strange transitions Ds(2630) →
Du(0−) + K−, and Ds(2630)→ Dd(0−) + KS. The widths are:

Γ(Ds(2630)→ Du(0
−) + K−) =

Γ(Ds(2630)→ Dd(0
−) + KS) =

(12)

(c) The (1P, 1D) supermultiplet

To clarify the interprertation of the SELEX resonance, we also must consider the 1P

Jp = (3/2)+ multiplet, containing the (1+, 2+) heavy spin multiplet. This forms a chiral

supermultiplet with a higher (1−, 2−) pair. Can we interpret the new DS(2360) as this 1−

state?

We can generalize the notation of Falk and Mehen [12] to write the corresponding chiral

supermultiplet multiplet:

Pµ =

(√
3/2(δµ

ν −
1

3
γνγ

µ +
1

3
γνv

µ)(P ν
V + iγ5P ν

A) + (KT
µν + iγ5Kµν

T5γν)

) (
1 + v/

2
√

2

)
(13)

Again, the center-of-mass of this supermultiplet will be elevated by a chiral invriant term.

Moreover, the chiral condensate will split the (1+, 2+) and (1−, 2−) pair. There will be

principle GT transitions between these terms described by the operator

+iGP
A TrPµv/ γ5v · APµ. (14)

Again, there are mixing effects. In particular the 1−P can mix with the 1−H,K states through

a chiral invariant term of the form: ??? IS THERE SUCH A TERM–LOOKS LIKE ZERO??

+i TrPµv/H (15)
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the notation of our earlier reference [5] is the treatment of γ5 in the chiral-supermultiplet

structure, where presently we define:
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L0 = −i Tr(Hv/ v · ∂H)− i Tr(Hv/ ∆0H)

−1

2
g(0)

π Tr(HΣH) + i
g(0)

A

fπ

[
Tr(Hv/ (∂/ Σ)H)

]
(25)

This Lagrangian encodes all of the same information as can be found in eq.(12) of [5], but

is a more compact form. ∆0 is the common supermultiplet center-of-mass and it can be

“gauged away” by a field redefinition. The splitting between the masses, and the main
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(which will be related to GA). The gA term leads to the pionic transitions within a heavy

spin multiplet, e.g. 1− → 0− + π.

Similarly, with different coefficients we have the Lagrangian for this second chiral super-

multiplet:

L1 = −i Tr(Kv/ v · ∂K)− i Tr(Kv/ ∆1K)

−1

2
g(1)

π Tr(KΣK) + i
g(1)

A

fπ

[
Tr(Kv/ (∂/ Σ)K)

]
.

(26)

Generally we expect a chirally invariant mass mixing term of the form:

−i Tr(Hv/ ∆01K) + h.c. (27)

By diagonalization, this term can be removed, leading to a term: H
K

T

v/

 0 0

0 ∆Σ

  H
K

 (28)
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+ ...In either the broken or the symmetric phase we can write:

Σ = ξσ̃ξ ξ = exp(iπ · λ/2fπ) (33)

where the 0+ nonet field is:

σ̃ =

√
2

3
σI3 + σaλa (34)

In the broken phase 〈σ〉 =
√

3/2fπ, and if we then take the 0+ nonet mass to infinity,

holding fπ fixed, we can decribe the octet of pseudoscalar mesons in the nonlinear Σ-model:

Σ = fπ exp(iπa · λa/fπ) (35)

Note that fπ = 95 MeV in this normalization. The nonlinear chiral Lagrangian takes the

form:

LL =
1

4
Tr(∂µΣ†∂µΣ) +

1

2
κ Tr(MqΣ + h.c.) (36)

where κ = fπm2
π/(mu + md) fits the meson masses, yielding the Gell-Mann–Okubo formula.

The expansion of the mass term in the meson fields to quadratic order yields an isospin

violating π0 η mixing term which we will require later:

LL = ... +
m2

π(mu −md)√
3(mu + md)

π0η (37)

takes the form:

L = −i Tr(Hv/ v · (∂ + V)H)− i Tr(Kv/ v · (∂ + V)K)

+i TrHv/ γ5v · AH + i TrKv/ γ5v · AK

+
1

2
Tr

 H
K

T  g(0)
π fπ + v/ ∆(0) v/ ∆(01)

v/ ∆(01) g(1)
π fπ + v/ ∆(1)

  H
K


+

gA

fπ
TrHv/ γ5γµ{Aµ, σ̃}H +

gA

fπ
TrKv/ γ5γµ{Aµ, σ̃}K

+
gA

fπ
TrHγµ(∂µσ̃ − i[Vµ, σ̃])H

+
gA

fπ
TrKγµ(∂µσ̃ − i[Vµ, σ̃])K

+... (38)

where:

ξ = exp(iπ · λ/2fπ) (39)
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4

In the chiral symmetric phase the multiplets H′ and H
are degenerate in mass. In the broken phase, however,
we have 〈σ̃〉 = fπI3, and from eq.(17) we learn that the
physical mass of the H′ state is elevated by the amount
+gπfπ/2, while the H state is depressed by −gπfπ/2
(see the Appendix for normalization conventions). The
Goldberger-Treiman relation is therefore obtained relat-
ing the mass difference ∆M to the coupling constant gπ:

∆M = gπfπ (20)

∆M is the mass difference between the multiplets that is
now measured to be 349 MeV from the BABAR results.
This implies gπ = 3.73.

Note that we can decouple the heavier field H′ and the
0+ nonet, yielding an effective chiral Lagrangian for the
lower energy field H alone:

LLH = −1

2
Tr(Hv · (i∂ + V)H) − gA TrHγ5A/H

(21)

This Lagrangian [10] contains relatively limited informa-
tion, compared to eq.(17), and will not apply on energy
scales approaching ∆M above the groundstate mass.

The hyperfine mass splitting effects now take the form:

LLH,hyperfine =

k
Λ2

QCD

12mQ

[
Tr(H′σµνH′σµν) + Tr(HσµνHσµν)

]
(22)

We have assumed k′ << k is negligible, as per the dis-
cussion of ordering the strengths of various terms. This
implies that the hyperfine splitting within the heavy
(0+, 1+) multiplet is identical to that in the groundstate
(0−, 1−) mesons.

III. SPECTRUM

From the Lagrangian of eq.(17) we see that the chi-
ral multiplet structure, together with HQ symmetry con-
trols, the masses within the (0+, 1+) multiplet. The spin-
weighted center of mass of any (0+, 1+) multiplet will
have a universal ∆M(mQ) above the corresponding spin-
weighted groundstate in all heavy–light systems. This is
weakly dependent upon mQ, and approaches a universal
value ∆M(∞) in the heavy–quark symmetry limit limit,
mQ → ∞.

The observed Ds(0+) resonance in BABAR measures
∆M(mc). ∆M(mc) is therefore determined by the
mass difference of the Ds(0+, 2317) and the groundstate
Ds(0−, 1969) to be:

∆M(mc) = 349 MeV. (23)

A predicted value of ∆M(∞) ≈ 338 MeV was obtained in
[4] from a fit to the HL chiral constituent–quark model.

Using ∆M(mc) we predict the Ds(1+) mass:

M(Ds(1
+)) = 2460 MeV (24)

from the sum of the Ds(1−, 2112) mass and ∆M(mc).
This is in good agreement with the hinted second reso-
nance in Dsπ0γ in the BABAR data.

In the nonstrange D±(0+, 1+) and D0(0+, 1+) multi-
plets the chiral mass gap is also given by the measured
value ∆M(mc). We therefore predict:

M(D±(0+)) = 2217 MeV;

M(D±(1+)) = 2358 MeV;

M(D0(0+)) = 2212 MeV;

M(D0(1+)) = 2355 MeV. (25)

There will be corrections of order ΛQCD/mc to the in-
ferred value of the universal ∆M(∞), from the center of
mass. The B system will provide a better determination
of the heavy-quark symmetry limit and the chiral mass
gap, ∆M(∞). We have no prediction for these correc-
tions at present so we take ∆M(mb) = ∆M(mc) ± 35
MeV. In the B system we therefore predict:

M(B±(0+)) = M(B0(0+)) = 5627 ± 35 MeV. (26)

The M(B±(1−)) and M(B0(1−)) masses must be in-
ferred from heavy-quark symmetry. This is an intramul-
tiplet hyperfine splitting, above the M(B±(0+)) = 5627
MeV groundstate. In the B-system it is reduced by a
factor of mc/mb = 0.33 relative to the corresponding
M(D(1−)) − M(D(0−)) = 142 MeV. Hence, we have:

M(B±(1−)) − M(B±(0−)) = 47 MeV. (27)

We thus predict:

M(B±(1+)) = M(B0(1+)) = 5674± 35 MeV (28)

For the Bs system we have the established groundstate
mass of M(Bs(0−)) = 5370 MeV and we likewise infer:

M(Bs(1
−)) = 5417 MeV. (29)

From this we predict:

M(Bs(0
+)) = 5718± 35 MeV

M(Bs(1
+)) = 5765± 35 MeV. (30)

IV. PIONIC TRANSITIONS

(A) Intermultiplet Transitions

The chiral structure of the theory controls the decays of
the form (0+, 1+) → (0−, 1−)+π. These decays between
multiplets proceed through the axial coupling term:

+i
1

2
GA Tr(H′v · AH) − i

1

2
GA Tr(Hv · AH′) (31)

Goldberger-Treiman Relation 
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+i
1

2
GA Tr(H′v · AH) − i

1

2
GA Tr(Hv · AH′) (31)

Determines

Pion transitions

Mass splittings

Symmetry relation

One pion isospin violating transitions.

 Coefficients set by fit by other known transitions

Two pion transition.

Form determined by 
chiral lagrangian
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Electromagnetic transitions

define

6

We shift σ0 =
√

3/2fπ + σ and expand the currents to
obtain the effective couplings to the 2π:

→ 1

fπ

√
3
[(∂$π)2 − m2

π($π)2]
[√

2σ0 + σ8
]

(46)

Putting this together gives the Ds(1+) → Ds(0−) +
π0π0 amplitude:

2gA

3f2
π

εµqµ(q2 − 4m2
π)

[
1

q2 − m2
σ0

+
1

q2 − m2
σ8

]
(47)

where q2 = (p1 + p2)2 is the 2π system invariant mass.
The π+π− amplitude is

√
2 larger.

The resulting widths are controlled by the
∆M(Ds(1+) − Ds(0−)) = 491 MeV. The phase
space integrals are extremely sensitive to scalar masses
varying by over an order of magnitude when the lighter
singlet mass is varied over the range 0.8 to 1.2 GeV. We
will give the values for mσ0 = 1.0 GeV with a heavier
octet scalar at 1.5 GeV (note the singlet-octet splitting
is opposite for scalars and pseudoscalars). As in our
discussion of the η-π0 mixing, the coupling of the singlet
meson to hadrons is also uncertain due to the mixing
with gluons. Nevertheless we give representative widths
using nonet couplings and the scalar masses given above:

Γ(Ds(1
+) → Ds(0

−)π0π0) = 6.4g2
A = 2.3 keV

Γ(Ds(1
+) → Ds(0

−)π+π−) = 5.4g2
A = 1.9 keV

Γ(Ds(1
+) → Ds(0

−)ππ) = 4.2 keV (48)

where gA = 0.6 is used. The corresponding widths in the
Bs system are significantly smaller due to the reduced
phase space:

Γ(Bs(1
+) → Bs(0

−)π0π0) = 0.19g2
A = 0.07 keV

Γ(Bs(1
+) → Bs(0

−)π+π−) = 0.13g2
A = 0.05 keV

Γ(Bs(1
+) → Bs(0

−)ππ) = 0.12 keV (49)

(vi) Ds(1+) → Ds(0−) + 3π

This decay is allowed by phase space, and proceeds
through ω − φ mixing. It is highly suppressed by chiral
symmetry, as well as a strong OZI-rule suppression. We
do not consider it further in the present paper.

(B) Intramultiplet Transitions

The chiral structure of the theory controls the intra-
multiplet decays of the form D(1±) → D(0±)+π. These
decays within multiplets proceed through the gA coupling
term:

+
gA

2fπ

[
Tr(H′

γ5γµ{Aµ, σ̃}H′) − Tr(Hγ5γµ{Aµ, σ̃}H)
]

(50)
with σ̃ → fπI3. Such transitions are relevant only for the
charmed mesons. The intramultiplet hyperfine splitting
in mass between the 1± and 0± states is too small in

the B mesons (and even smaller in the ccq, bcq and bbq
baryons) to allow this decay.

The resulting decay widths are:

Γ(D∗+(1−) → D+(0−)π0) = 181g2
A keV = 65.2 keV

Γ(D∗+(1−) → D0(0−)π+) = 83g2
A keV = 30.1 keV

(51)

where gA = 0.6 was used. The identical widths are ob-
tained for the 1+ → 0+ + π modes.

Γ(D∗+(1+) → D+(0+)π0) = 181g2
A keV = 65.2 keV

Γ(D∗+(1+) → D0(0+)π+) = 83g2
A keV = 30.1 keV

(52)

V. ELECTROMAGNETIC TRANSITIONS

In the static limit, heavy-light mesons can be used
to define the electromagnetic properties of the teth-
ered constituent–quark. In fact, it has sometimes been
suggested that the constituent quark mass be defined
through the meson magnetic moment in this limit.

The M1 electromagnetic transitions govern the intra-
multiplet processes, 1± → 0±γ, while the E1 transitions
govern intermultiplet processes, (1+, 0+) → (1−, 0−)γ.
There are significant finite heavy–quark mass corrections
particularly for the Ds system. We observe below that
the 1− → 0−γ M1 transition amplitude, and the three
E1 transition amplitudes, 1+ → 1−γ, 1+ → 0−γ and
0+ → 1−γ, receive a common overall coefficient rQq. We
find:

rQq =

(
1 − m∗

qeQ

m∗
Q

eq

)
(53)

where m∗ and e are the mass and charge of the
constituent–quarks. In the Ds system the anti–charm
quark has a charge of −2/3 and the strange quark charge
−1/3 leading to a large suppression (see the Appendix of
[13]):

rcs =

(
1 − 2m∗

s

m∗
c

)
(54)

The Dd has a somewhat smaller suppression and the Du

an enhancement. In the B-meson system the situation
is reversed as the b-quark has charge +1/3 although the
overall effects are much smaller due to the larger mass
for the b-quark.

We use the usual constituent quark potential model
to estimate the electromagnetic transition rates. For the
M1 magnetic transitions 1− → 0−γ the rate is given by:

ΓM1(i → fγ) =
4α

3
µ2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (55)

6

We shift σ0 =
√

3/2fπ + σ and expand the currents to
obtain the effective couplings to the 2π:

→ 1

fπ

√
3
[(∂$π)2 − m2

π($π)2]
[√

2σ0 + σ8
]

(46)

Putting this together gives the Ds(1+) → Ds(0−) +
π0π0 amplitude:

2gA

3f2
π

εµqµ(q2 − 4m2
π)

[
1

q2 − m2
σ0

+
1

q2 − m2
σ8

]
(47)

where q2 = (p1 + p2)2 is the 2π system invariant mass.
The π+π− amplitude is

√
2 larger.

The resulting widths are controlled by the
∆M(Ds(1+) − Ds(0−)) = 491 MeV. The phase
space integrals are extremely sensitive to scalar masses
varying by over an order of magnitude when the lighter
singlet mass is varied over the range 0.8 to 1.2 GeV. We
will give the values for mσ0 = 1.0 GeV with a heavier
octet scalar at 1.5 GeV (note the singlet-octet splitting
is opposite for scalars and pseudoscalars). As in our
discussion of the η-π0 mixing, the coupling of the singlet
meson to hadrons is also uncertain due to the mixing
with gluons. Nevertheless we give representative widths
using nonet couplings and the scalar masses given above:

Γ(Ds(1
+) → Ds(0

−)π0π0) = 6.4g2
A = 2.3 keV

Γ(Ds(1
+) → Ds(0

−)π+π−) = 5.4g2
A = 1.9 keV

Γ(Ds(1
+) → Ds(0

−)ππ) = 4.2 keV (48)

where gA = 0.6 is used. The corresponding widths in the
Bs system are significantly smaller due to the reduced
phase space:

Γ(Bs(1
+) → Bs(0

−)π0π0) = 0.19g2
A = 0.07 keV

Γ(Bs(1
+) → Bs(0

−)π+π−) = 0.13g2
A = 0.05 keV

Γ(Bs(1
+) → Bs(0

−)ππ) = 0.12 keV (49)

(vi) Ds(1+) → Ds(0−) + 3π

This decay is allowed by phase space, and proceeds
through ω − φ mixing. It is highly suppressed by chiral
symmetry, as well as a strong OZI-rule suppression. We
do not consider it further in the present paper.

(B) Intramultiplet Transitions

The chiral structure of the theory controls the intra-
multiplet decays of the form D(1±) → D(0±)+π. These
decays within multiplets proceed through the gA coupling
term:

+
gA

2fπ

[
Tr(H′

γ5γµ{Aµ, σ̃}H′) − Tr(Hγ5γµ{Aµ, σ̃}H)
]

(50)
with σ̃ → fπI3. Such transitions are relevant only for the
charmed mesons. The intramultiplet hyperfine splitting
in mass between the 1± and 0± states is too small in

the B mesons (and even smaller in the ccq, bcq and bbq
baryons) to allow this decay.

The resulting decay widths are:

Γ(D∗+(1−) → D+(0−)π0) = 181g2
A keV = 65.2 keV

Γ(D∗+(1−) → D0(0−)π+) = 83g2
A keV = 30.1 keV

(51)

where gA = 0.6 was used. The identical widths are ob-
tained for the 1+ → 0+ + π modes.

Γ(D∗+(1+) → D+(0+)π0) = 181g2
A keV = 65.2 keV

Γ(D∗+(1+) → D0(0+)π+) = 83g2
A keV = 30.1 keV

(52)

V. ELECTROMAGNETIC TRANSITIONS

In the static limit, heavy-light mesons can be used
to define the electromagnetic properties of the teth-
ered constituent–quark. In fact, it has sometimes been
suggested that the constituent quark mass be defined
through the meson magnetic moment in this limit.

The M1 electromagnetic transitions govern the intra-
multiplet processes, 1± → 0±γ, while the E1 transitions
govern intermultiplet processes, (1+, 0+) → (1−, 0−)γ.
There are significant finite heavy–quark mass corrections
particularly for the Ds system. We observe below that
the 1− → 0−γ M1 transition amplitude, and the three
E1 transition amplitudes, 1+ → 1−γ, 1+ → 0−γ and
0+ → 1−γ, receive a common overall coefficient rQq. We
find:

rQq =

(
1 − m∗

qeQ

m∗
Q

eq

)
(53)

where m∗ and e are the mass and charge of the
constituent–quarks. In the Ds system the anti–charm
quark has a charge of −2/3 and the strange quark charge
−1/3 leading to a large suppression (see the Appendix of
[13]):

rcs =

(
1 − 2m∗

s

m∗
c

)
(54)

The Dd has a somewhat smaller suppression and the Du

an enhancement. In the B-meson system the situation
is reversed as the b-quark has charge +1/3 although the
overall effects are much smaller due to the larger mass
for the b-quark.

We use the usual constituent quark potential model
to estimate the electromagnetic transition rates. For the
M1 magnetic transitions 1− → 0−γ the rate is given by:

ΓM1(i → fγ) =
4α

3
µ2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (55)
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where the magnetic dipole moment is:

µQq =
m∗

Qeq − m∗
qeQ

2m∗
Qm∗

q

=
eq

2m∗
q

rQq (56)

and k is the photon energy.
The strength of the electric-dipole transitions is gov-

erned by the size of the radiator and the charges of the
constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
4α <eavg >2

27
k3(2Jf +1)|〈f |r|i〉|2Sif ,

(57)
where the mean charge is

<eavg >=
m∗

Qeq − m∗
qeQ

m∗
Q + m∗

q

=
eqm∗

QrQq

m∗
Q + m∗

q

, (58)

k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.

For the 1+ → 0+γ M1 transition we define the coeffi-
cient r′

Qq
:

r′
Qq

=

(
1 + 3

m∗
qeQ

m∗
Q

eq

)
(63)

The decay rate is given by:

ΓM1(i → fγ) =
4α

3
µ′2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (64)

where the effective magnetic dipole moment µ′
Qq

is now:

µ′
Qq

=
−m∗

Qeq − 3m∗
qeQ

6m∗
Qm∗

q

= − eq

6m∗
q

r′
Qq

(65)

and k is the photon energy,

r′cs = 2.88 r′
bs

= 0.70. (66)

These decay rates are also included for the Ds and Bs

systems in Table II.
Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
the heavy quark limit.

VI. DOUBLY-HEAVY BARYONS

We will provide only a schematic discussion of the cor-
responding situation in the doubly-heavy baryons, and
defer tabulating detailed results. These systems provide
interesting targets of opportunity in the spectroscopy of
QCD, but are challenging to reconstruct. For some re-
cent reviews and relevant information see [14]. A chiral
constituent–quark model similar to [4], has been devel-
oped as well for these systems [15].

There are four distinct doubly-heavy baryon sys-
tems, each transforming as flavor SU(3) triplets,
[cc]J=1(u, d, s), [bc]J=0(u, d, s), [bc]J=1(u, d, s), and

E1 transitions rate
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where the magnetic dipole moment is:

µQq =
m∗

Qeq − m∗
qeQ

2m∗
Qm∗

q

=
eq

2m∗
q

rQq (56)

and k is the photon energy.
The strength of the electric-dipole transitions is gov-

erned by the size of the radiator and the charges of the
constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
4α <eavg >2

27
k3(2Jf +1)|〈f |r|i〉|2Sif ,

(57)
where the mean charge is

<eavg >=
m∗

Qeq − m∗
qeQ

m∗
Q + m∗

q

=
eqm∗

QrQq

m∗
Q + m∗

q

, (58)

k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.

For the 1+ → 0+γ M1 transition we define the coeffi-
cient r′

Qq
:

r′
Qq

=

(
1 + 3

m∗
qeQ

m∗
Q

eq

)
(63)

The decay rate is given by:

ΓM1(i → fγ) =
4α

3
µ′2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (64)

where the effective magnetic dipole moment µ′
Qq

is now:

µ′
Qq

=
−m∗

Qeq − 3m∗
qeQ

6m∗
Qm∗

q

= − eq

6m∗
q

r′
Qq

(65)

and k is the photon energy,

r′cs = 2.88 r′
bs

= 0.70. (66)

These decay rates are also included for the Ds and Bs

systems in Table II.
Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
the heavy quark limit.

VI. DOUBLY-HEAVY BARYONS

We will provide only a schematic discussion of the cor-
responding situation in the doubly-heavy baryons, and
defer tabulating detailed results. These systems provide
interesting targets of opportunity in the spectroscopy of
QCD, but are challenging to reconstruct. For some re-
cent reviews and relevant information see [14]. A chiral
constituent–quark model similar to [4], has been devel-
oped as well for these systems [15].

There are four distinct doubly-heavy baryon sys-
tems, each transforming as flavor SU(3) triplets,
[cc]J=1(u, d, s), [bc]J=0(u, d, s), [bc]J=1(u, d, s), and
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where the magnetic dipole moment is:

µQq =
m∗

Qeq − m∗
qeQ

2m∗
Qm∗

q

=
eq

2m∗
q

rQq (56)

and k is the photon energy.
The strength of the electric-dipole transitions is gov-

erned by the size of the radiator and the charges of the
constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
4α <eavg >2

27
k3(2Jf +1)|〈f |r|i〉|2Sif ,

(57)
where the mean charge is

<eavg >=
m∗

Qeq − m∗
qeQ

m∗
Q + m∗

q

=
eqm∗

QrQq

m∗
Q + m∗

q

, (58)

k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.

For the 1+ → 0+γ M1 transition we define the coeffi-
cient r′

Qq
:

r′
Qq

=

(
1 + 3

m∗
qeQ

m∗
Q

eq

)
(63)

The decay rate is given by:

ΓM1(i → fγ) =
4α

3
µ′2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (64)

where the effective magnetic dipole moment µ′
Qq

is now:

µ′
Qq

=
−m∗

Qeq − 3m∗
qeQ

6m∗
Qm∗

q

= − eq

6m∗
q

r′
Qq

(65)

and k is the photon energy,

r′cs = 2.88 r′
bs

= 0.70. (66)

These decay rates are also included for the Ds and Bs

systems in Table II.
Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
the heavy quark limit.

VI. DOUBLY-HEAVY BARYONS

We will provide only a schematic discussion of the cor-
responding situation in the doubly-heavy baryons, and
defer tabulating detailed results. These systems provide
interesting targets of opportunity in the spectroscopy of
QCD, but are challenging to reconstruct. For some re-
cent reviews and relevant information see [14]. A chiral
constituent–quark model similar to [4], has been devel-
oped as well for these systems [15].

There are four distinct doubly-heavy baryon sys-
tems, each transforming as flavor SU(3) triplets,
[cc]J=1(u, d, s), [bc]J=0(u, d, s), [bc]J=1(u, d, s), and
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where the magnetic dipole moment is:

µQq =
m∗

Qeq − m∗
qeQ

2m∗
Qm∗

q

=
eq

2m∗
q

rQq (56)

and k is the photon energy.
The strength of the electric-dipole transitions is gov-

erned by the size of the radiator and the charges of the
constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
4α <eavg >2

27
k3(2Jf +1)|〈f |r|i〉|2Sif ,

(57)
where the mean charge is

<eavg >=
m∗

Qeq − m∗
qeQ

m∗
Q + m∗

q

=
eqm∗

QrQq

m∗
Q + m∗

q

, (58)

k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.
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wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
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The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
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has j! = 1/2 which does not mix with the j! = 3/2 state
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With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:
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27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.
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wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
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and k is the photon energy.
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k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)
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In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.
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and k is the photon energy,
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Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
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and k is the photon energy.
The strength of the electric-dipole transitions is gov-
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constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
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k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)
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In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.
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k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.
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D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
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quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
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µ′
Qq

=
−m∗

Qeq − 3m∗
qeQ

6m∗
Qm∗

q

= − eq

6m∗
q

r′
Qq

(65)

and k is the photon energy,

r′cs = 2.88 r′
bs

= 0.70. (66)

These decay rates are also included for the Ds and Bs

systems in Table II.
Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
the heavy quark limit.

VI. DOUBLY-HEAVY BARYONS

We will provide only a schematic discussion of the cor-
responding situation in the doubly-heavy baryons, and
defer tabulating detailed results. These systems provide
interesting targets of opportunity in the spectroscopy of
QCD, but are challenging to reconstruct. For some re-
cent reviews and relevant information see [14]. A chiral
constituent–quark model similar to [4], has been devel-
oped as well for these systems [15].

There are four distinct doubly-heavy baryon sys-
tems, each transforming as flavor SU(3) triplets,
[cc]J=1(u, d, s), [bc]J=0(u, d, s), [bc]J=1(u, d, s), and
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TABLE I: The heavy-light spectrum compared to experiment. We report the difference between the excited state masses and
the ground state (D or B) in each case. We have assumed that ∆M(mc) = ∆M(mb) = ∆M(∞) = 349 MeV.

charmed meson masses [MeV] bottom meson masses [MeV]
model experiment model experiment

D∗0
− D0 142 [a] 142.12 ± 0.07 B∗0

− B0 46 [a] 45.78 ± 0.35
D∗+

− D+ 141 [a] 140.64 ± 0.10 B∗+
− B+ 46 [a] 45.78 ± 0.35

D∗+
s − D+

s 144 [a] 143.8 ± 0.41 B∗+
s − B+

s 47 [a] 47.0 ± 2.6
D0(0+) − D0 349 B0(0+) − B0 349
D+(0+)−D+ 349 B+(0+)−B+ 349
D+

s (0+)−D+
s 349 [a] 349 ± 1.3 [b] B+

s (0+)−B+
s 349

D0(1+) − D0(0+) 142 B0(1+) − B0(0+) 46
D+(1+)−D+(0+) 141 B+(1+)−B+(0+) 46
D+

s (1+)−D+
s (0+) 144 B+

s (1+)−B+
s (0+) 47

[a] Experimental input to model parameters fit. [b] BaBar result [1].

TABLE II: The predicted hadronic and electromagnetic transistion rates for narrow jP
l = 1/2−(1S) and jP

l = 1/2+(1P ) heavy-
light states. “Overlap” is the reduced matrix element overlap integral; “dependence” refers to the sensitive model parameters, as
defined in the text. We take GA = 1 and extract gA from a fit to the D+∗ total width. Note that the cs transitions are sensitive
to rcs; if we implement the observed ratio of branching fractions (Ds(1−) → Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062±0.026
then the E1 radiative transitions for the cs system should be reduced by a factor of ∼ 3

system transition Q(keV) overlap dependence Γ (keV) exptl BR

(cu) 1−
→ 0− + γ 137 0.991 rcu 33.5 (38.1 ± 2.9)%

1−
→ 0− + π0 137 gA 43.6 (61.9 ± 2.9)%
total 77.1

(cd) 1−
→ 0− + γ 136 0.991 rcd 1.63 (1.6 ± 0.4)%

1−
→ 0− + π0 38 gA 30.1 (30.7 ± 0.5)%

1−
→ 0− + π+ 39 gA 65.1 (67.7 ± 0.5)%
total 96.8 96 ± 22

(cs) 1−
→ 0− + γ 138 0.992 rcs 0.43 (94.2 ± 2.5)%

1−
→ 0− + π0 48 gAδηπ0 0.0079 (5.8 ± 2.5)%
total 0.44

(cs) 0+
→ 1− + γ 212 2.794 rcs 1.74

0+
→ 0− + π0 297 GAδηπ0 21.5
total 23.2

(cs) 1+
→ 0+ + γ 138 0.992 r′cs 2.74

1+
→ 0+ + π0 48 gAδηπ0 0.0079

1+
→ 1− + γ 323 2.638 rcs 4.66

1+
→ 0− + γ 442 2.437 rcs 5.08

1+
→ 1− + π0 298 GAδηπ0 21.5

1+
→ 0− + 2π 221 gAδσ1σ3

4.2
total 38.2

(bu) 1−
→ 0− + γ 46 0.998 rbu 0.78
total 0.78

(bd) 1−
→ 0− + γ 46 0.998 rbd 0.24
total 0.24

(bs) 1−
→ 0− + γ 47 0.998 rbs 0.15
total 0.15

(bs) 0+
→ 1− + γ 293 2.536 rbs 58.3

0+
→ 0− + π0 297 GAδηπ0 21.5
total 79.8

(bs) 1+
→ 0+ + γ 47 0.998 r′

bs
0.061

1+
→ 1− + γ 335 2.483 rbs 56.9

1+
→ 0− + γ 381 2.423 rbs 39.1

1+
→ 1− + π0 298 GAδηπ0 21.5

1+
→ 0− + 2π 125 gAδσ1σ3

0.12
total 117.7

BEH predictions for decays
7

where the magnetic dipole moment is:

µQq =
m∗

Qeq − m∗
qeQ

2m∗
Qm∗

q

=
eq

2m∗
q

rQq (56)

and k is the photon energy.
The strength of the electric-dipole transitions is gov-

erned by the size of the radiator and the charges of the
constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
4α <eavg >2

27
k3(2Jf +1)|〈f |r|i〉|2Sif ,

(57)
where the mean charge is

<eavg >=
m∗

Qeq − m∗
qeQ

m∗
Q + m∗

q

=
eqm∗

QrQq

m∗
Q + m∗

q

, (58)

k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.

For the 1+ → 0+γ M1 transition we define the coeffi-
cient r′

Qq
:

r′
Qq

=

(
1 + 3

m∗
qeQ

m∗
Q

eq

)
(63)

The decay rate is given by:

ΓM1(i → fγ) =
4α

3
µ′2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (64)

where the effective magnetic dipole moment µ′
Qq

is now:

µ′
Qq

=
−m∗

Qeq − 3m∗
qeQ

6m∗
Qm∗

q

= − eq

6m∗
q

r′
Qq

(65)

and k is the photon energy,

r′cs = 2.88 r′
bs

= 0.70. (66)

These decay rates are also included for the Ds and Bs

systems in Table II.
Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
the heavy quark limit.

VI. DOUBLY-HEAVY BARYONS

We will provide only a schematic discussion of the cor-
responding situation in the doubly-heavy baryons, and
defer tabulating detailed results. These systems provide
interesting targets of opportunity in the spectroscopy of
QCD, but are challenging to reconstruct. For some re-
cent reviews and relevant information see [14]. A chiral
constituent–quark model similar to [4], has been devel-
oped as well for these systems [15].

There are four distinct doubly-heavy baryon sys-
tems, each transforming as flavor SU(3) triplets,
[cc]J=1(u, d, s), [bc]J=0(u, d, s), [bc]J=1(u, d, s), and
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where the magnetic dipole moment is:

µQq =
m∗

Qeq − m∗
qeQ

2m∗
Qm∗

q

=
eq

2m∗
q

rQq (56)

and k is the photon energy.
The strength of the electric-dipole transitions is gov-

erned by the size of the radiator and the charges of the
constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
4α <eavg >2

27
k3(2Jf +1)|〈f |r|i〉|2Sif ,

(57)
where the mean charge is

<eavg >=
m∗

Qeq − m∗
qeQ

m∗
Q + m∗

q

=
eqm∗

QrQq

m∗
Q + m∗

q

, (58)

k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.

For the 1+ → 0+γ M1 transition we define the coeffi-
cient r′

Qq
:

r′
Qq

=

(
1 + 3

m∗
qeQ

m∗
Q

eq

)
(63)

The decay rate is given by:

ΓM1(i → fγ) =
4α

3
µ′2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (64)

where the effective magnetic dipole moment µ′
Qq

is now:

µ′
Qq

=
−m∗

Qeq − 3m∗
qeQ

6m∗
Qm∗

q

= − eq

6m∗
q

r′
Qq

(65)

and k is the photon energy,

r′cs = 2.88 r′
bs

= 0.70. (66)

These decay rates are also included for the Ds and Bs

systems in Table II.
Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
the heavy quark limit.

VI. DOUBLY-HEAVY BARYONS

We will provide only a schematic discussion of the cor-
responding situation in the doubly-heavy baryons, and
defer tabulating detailed results. These systems provide
interesting targets of opportunity in the spectroscopy of
QCD, but are challenging to reconstruct. For some re-
cent reviews and relevant information see [14]. A chiral
constituent–quark model similar to [4], has been devel-
oped as well for these systems [15].

There are four distinct doubly-heavy baryon sys-
tems, each transforming as flavor SU(3) triplets,
[cc]J=1(u, d, s), [bc]J=0(u, d, s), [bc]J=1(u, d, s), and
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where the magnetic dipole moment is:

µQq =
m∗

Qeq − m∗
qeQ

2m∗
Qm∗

q

=
eq

2m∗
q

rQq (56)

and k is the photon energy.
The strength of the electric-dipole transitions is gov-

erned by the size of the radiator and the charges of the
constituent–quarks. The E1 transition rate is given by

ΓE1(i → f +γ) =
4α <eavg >2

27
k3(2Jf +1)|〈f |r|i〉|2Sif ,

(57)
where the mean charge is

<eavg >=
m∗

Qeq − m∗
qeQ

m∗
Q + m∗

q

=
eqm∗

QrQq

m∗
Q + m∗

q

, (58)

k is the photon energy, and the statistical factor, Sif , for
(i, f) = (0+, 1−) is 1, for (1+, 1−) is 2/3, and for (1+, 0−)
is 1.

To evaluate the factor rQq we use the constituent–
quark masses:

m∗
u = m∗

d = 350 MeV

ms = 480 MeV

m∗
c = (3M(J/Ψ) − M(ηc))/8 = 1530 MeV

m∗
b = (3M(Υ) − M(ηb))/8 = 4730 MeV

(59)

This in turn leads the rQq factors:

rcu = 1.23 rbu = 0.85

rcd = 0.54 rbd = 1.07

rcs = 0.38 rbs = 1.10 (60)

With these rQq factors we can see the large cancellation
between the light (d, s) quark moment and the charm
quark moment. Using the measured total width of the
D+∗ to set the pionic transition. The partial rates for
photonic decays in the D0∗ and D+∗ systems can be cal-
culated. The uncertainty in the total width drops out for
the ratio of partial widths:

Γ[D+∗ → D+ + γ]

Γ[D0∗ → D0 + γ]
=

1.6 ± 0.4

27.4 ± 2.1
= 0.058 ± 0.015 (61)

This implies:∣∣∣∣µ(D+∗)

µ(D0∗)

∣∣∣∣ = 0.24 ± 0.03 |expt =
1

2

(
rcd

rcu

)
= 0.22 |theory

(62)
In the HQ limit this ratio is 0.5. Hence the finite charm
quark mass provides a large cancellation for the D+∗ sys-
tem. This suppression of the M1 transition will be even
larger for the D+∗

s system as rcs < rcs. Rates for the
allowed M1 transitions are given in Table II.

The same cancellation that appears for the M1 tran-
sition is operative for the E1 transitions. In the Ds sys-
tem this greatly suppresses the rate for the (0+, 1+) →

(0−, 1−) + γ allowed E1 transitions. The E1 transition
rates and photon energies are also presented in Table II.

The observed ratio of branching fractions (Ds(1−) →
Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062 ± 0.026 is
large compared to our prediction of 0.018. This may
indicate that rcs is more suppressed than our estimate in
eq.(60). If we implement the experimental value for this
ratio, then the E1 radiative transitions of Table II for the
cs system should be reduced by a factor of ∼ 3.

In the B-system there is no suppression for the Bd and
Bs transitions are slightly enhanced by the rbq factors.
There is a small suppression in the Bu states. The result-
ing electromagnetic transition rates and photon energies
for the narrow B states are presented in Table II.

For the 1+ → 0+γ M1 transition we define the coeffi-
cient r′

Qq
:

r′
Qq

=

(
1 + 3

m∗
qeQ

m∗
Q

eq

)
(63)

The decay rate is given by:

ΓM1(i → fγ) =
4α

3
µ′2

Qq
k3(2Jf + 1)|〈f |j0(kr)|i〉|2, (64)

where the effective magnetic dipole moment µ′
Qq

is now:

µ′
Qq

=
−m∗

Qeq − 3m∗
qeQ

6m∗
Qm∗

q

= − eq

6m∗
q

r′
Qq

(65)

and k is the photon energy,

r′cs = 2.88 r′
bs

= 0.70. (66)

These decay rates are also included for the Ds and Bs

systems in Table II.
Finally, we have ignored mixing between the two 1+ p-

wave mesons as the parity partner of the s-wave mesons
has j! = 1/2 which does not mix with the j! = 3/2 state
at leading order in the heavy quark expansion. The total
angular momentum of the light quark, j!, is conserved in
the heavy quark limit.

VI. DOUBLY-HEAVY BARYONS

We will provide only a schematic discussion of the cor-
responding situation in the doubly-heavy baryons, and
defer tabulating detailed results. These systems provide
interesting targets of opportunity in the spectroscopy of
QCD, but are challenging to reconstruct. For some re-
cent reviews and relevant information see [14]. A chiral
constituent–quark model similar to [4], has been devel-
oped as well for these systems [15].

There are four distinct doubly-heavy baryon sys-
tems, each transforming as flavor SU(3) triplets,
[cc]J=1(u, d, s), [bc]J=0(u, d, s), [bc]J=1(u, d, s), and

pion transition rates unchanged

E1 rates ~  r*r
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TABLE I: The heavy-light spectrum compared to experiment. We report the difference between the excited state masses and
the ground state (D or B) in each case. We have assumed that ∆M(mc) = ∆M(mb) = ∆M(∞) = 349 MeV.

charmed meson masses [MeV] bottom meson masses [MeV]
model experiment model experiment

D∗0
− D0 142 [a] 142.12 ± 0.07 B∗0

− B0 46 [a] 45.78 ± 0.35
D∗+

− D+ 141 [a] 140.64 ± 0.10 B∗+
− B+ 46 [a] 45.78 ± 0.35

D∗+
s − D+

s 144 [a] 143.8 ± 0.41 B∗+
s − B+

s 47 [a] 47.0 ± 2.6
D0(0+) − D0 349 B0(0+) − B0 349
D+(0+)−D+ 349 B+(0+)−B+ 349
D+

s (0+)−D+
s 349 [a] 349 ± 1.3 [b] B+

s (0+)−B+
s 349

D0(1+) − D0(0+) 142 B0(1+) − B0(0+) 46
D+(1+)−D+(0+) 141 B+(1+)−B+(0+) 46
D+

s (1+)−D+
s (0+) 144 B+

s (1+)−B+
s (0+) 47

[a] Experimental input to model parameters fit. [b] BaBar result [1].

TABLE II: The predicted hadronic and electromagnetic transistion rates for narrow jP
l = 1/2−(1S) and jP

l = 1/2+(1P ) heavy-
light states. “Overlap” is the reduced matrix element overlap integral; “dependence” refers to the sensitive model parameters, as
defined in the text. We take GA = 1 and extract gA from a fit to the D+∗ total width. Note that the cs transitions are sensitive
to rcs; if we implement the observed ratio of branching fractions (Ds(1−) → Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062±0.026
then the E1 radiative transitions for the cs system should be reduced by a factor of ∼ 3

system transition Q(keV) overlap dependence Γ (keV) exptl BR

(cu) 1−
→ 0− + γ 137 0.991 rcu 33.5 (38.1 ± 2.9)%

1−
→ 0− + π0 137 gA 43.6 (61.9 ± 2.9)%
total 77.1

(cd) 1−
→ 0− + γ 136 0.991 rcd 1.63 (1.6 ± 0.4)%

1−
→ 0− + π0 38 gA 30.1 (30.7 ± 0.5)%

1−
→ 0− + π+ 39 gA 65.1 (67.7 ± 0.5)%
total 96.8 96 ± 22

(cs) 1−
→ 0− + γ 138 0.992 rcs 0.43 (94.2 ± 2.5)%

1−
→ 0− + π0 48 gAδηπ0 0.0079 (5.8 ± 2.5)%
total 0.44

(cs) 0+
→ 1− + γ 212 2.794 rcs 1.74

0+
→ 0− + π0 297 GAδηπ0 21.5
total 23.2

(cs) 1+
→ 0+ + γ 138 0.992 r′cs 2.74

1+
→ 0+ + π0 48 gAδηπ0 0.0079

1+
→ 1− + γ 323 2.638 rcs 4.66

1+
→ 0− + γ 442 2.437 rcs 5.08

1+
→ 1− + π0 298 GAδηπ0 21.5

1+
→ 0− + 2π 221 gAδσ1σ3

4.2
total 38.2

(bu) 1−
→ 0− + γ 46 0.998 rbu 0.78
total 0.78

(bd) 1−
→ 0− + γ 46 0.998 rbd 0.24
total 0.24

(bs) 1−
→ 0− + γ 47 0.998 rbs 0.15
total 0.15

(bs) 0+
→ 1− + γ 293 2.536 rbs 58.3

0+
→ 0− + π0 297 GAδηπ0 21.5
total 79.8

(bs) 1+
→ 0+ + γ 47 0.998 r′

bs
0.061

1+
→ 1− + γ 335 2.483 rbs 56.9

1+
→ 0− + γ 381 2.423 rbs 39.1

1+
→ 1− + π0 298 GAδηπ0 21.5

1+
→ 0− + 2π 125 gAδσ1σ3

0.12
total 117.7
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TABLE I: The heavy-light spectrum compared to experiment. We report the difference between the excited state masses and
the ground state (D or B) in each case. We have assumed that ∆M(mc) = ∆M(mb) = ∆M(∞) = 349 MeV.
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light states. “Overlap” is the reduced matrix element overlap integral; “dependence” refers to the sensitive model parameters, as
defined in the text. We take GA = 1 and extract gA from a fit to the D+∗ total width. Note that the cs transitions are sensitive
to rcs; if we implement the observed ratio of branching fractions (Ds(1−) → Ds(0−)π0)/Γ(Ds(1−) → Ds(0−)γ) = 0.062±0.026
then the E1 radiative transitions for the cs system should be reduced by a factor of ∼ 3

system transition Q(keV) overlap dependence Γ (keV) exptl BR

(cu) 1−
→ 0− + γ 137 0.991 rcu 33.5 (38.1 ± 2.9)%

1−
→ 0− + π0 137 gA 43.6 (61.9 ± 2.9)%
total 77.1

(cd) 1−
→ 0− + γ 136 0.991 rcd 1.63 (1.6 ± 0.4)%

1−
→ 0− + π0 38 gA 30.1 (30.7 ± 0.5)%

1−
→ 0− + π+ 39 gA 65.1 (67.7 ± 0.5)%
total 96.8 96 ± 22

(cs) 1−
→ 0− + γ 138 0.992 rcs 0.43 (94.2 ± 2.5)%

1−
→ 0− + π0 48 gAδηπ0 0.0079 (5.8 ± 2.5)%
total 0.44

(cs) 0+
→ 1− + γ 212 2.794 rcs 1.74

0+
→ 0− + π0 297 GAδηπ0 21.5
total 23.2

(cs) 1+
→ 0+ + γ 138 0.992 r′cs 2.74

1+
→ 0+ + π0 48 gAδηπ0 0.0079

1+
→ 1− + γ 323 2.638 rcs 4.66

1+
→ 0− + γ 442 2.437 rcs 5.08

1+
→ 1− + π0 298 GAδηπ0 21.5

1+
→ 0− + 2π 221 gAδσ1σ3

4.2
total 38.2

(bu) 1−
→ 0− + γ 46 0.998 rbu 0.78
total 0.78

(bd) 1−
→ 0− + γ 46 0.998 rbd 0.24
total 0.24

(bs) 1−
→ 0− + γ 47 0.998 rbs 0.15
total 0.15

(bs) 0+
→ 1− + γ 293 2.536 rbs 58.3

0+
→ 0− + π0 297 GAδηπ0 21.5
total 79.8

(bs) 1+
→ 0+ + γ 47 0.998 r′

bs
0.061

1+
→ 1− + γ 335 2.483 rbs 56.9

1+
→ 0− + γ 381 2.423 rbs 39.1

1+
→ 1− + π0 298 GAδηπ0 21.5

1+
→ 0− + 2π 125 gAδσ1σ3

0.12
total 117.7

Striking 
Prediction  
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Analogy states 
in the D system

Expect coupling to decay channels to play a major role in explaining 
the differences in the P wave splittings in these systems.

Compute one loop chiral corrections 
for heavy-light transitions.

CCM :
 Simonov,Tjon [hep-ph/0409361]
    Hwang, Kim [hep-ph/0408154]

Chiral loop :
    Becirevic, Fajfer, Prelovsek [hep-ph/0406296]

Related recent 
works
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2π2
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k2dk
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Ω = M(shift) + i Γ(width)

C2 = CG× [
GAδM

fπ
]2 GA ≈ 1

| < 1,π|HI |0 > |2 = C2 exp−(k2/Λ2
cutoff)Introduce a cutoff to study 

sensitivity to wavefunctions.

Restrict calculations to 
S-wave transitions.
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π

low-lying charmed mesons is reported in Table ??. It is interesting to compare the hy-

perfine splitting between positive and negative parity states. Considering the PDG val-

ues [?]: MD∗0 − MD0 = 142.12 ± 0.07 MeV, MD∗+ − MD+ = 140.64 ± 0.10 MeV and

MD∗
s
−MDs = 143.9 ± 0.4 MeV, one realizes that the hyperfine splittings 1+ − 0+ and

1− − 0− coincide in the case of strange mesons; for non-strange mesons, the mass differ-

ences are compatible when the Belle result for the 0+, 1+ masses are considered, while

they disagree when the average values of the various measurements are considered.

Table 3: Hyperfine splittings between positive parity mesons, and mass differences be-
tween excited and low-lying cq̄ and cs̄ states. Belle data in Table ?? are used for the
masses of the broad states. In parentheses we also quote the results corresponding to the
averages in Table ??.

∆M (cq̄) (MeV) ∆M (cs̄) (MeV)
MD

′0
1
−MD∗0

0
= 119± 26 (87± 40) MDsJ (2460) −MD∗

sJ (2317) = 141.4± 1.2

MD
′0
1
−MD∗0 = 417± 36 (428± 30) MDsJ (2460) −MD∗

s
= 346.4± 1.2

MD∗0
0
−MD0 = 444± 36 (487± 27) MD∗

sJ (2317) −MDs = 348.9± 0.8

The measured branching fractions of two-body B decays to D∗
sJ(2317) or DsJ(2460) are

collected in Table ??. This is an important measurement since, as we discuss in Section

??, hints on the nature of the resonances can be provided considering ratios of radiative

to hadronic decay rates, either directly measured or inferred from data in Table ??.

3 Analyses: can the masses of (0+, 1+) cs̄ (cq̄) mesons
be reliably computed?

3.1 Quark models

Quark model estimates of the masses of p-wave cs̄ (cq̄) states were of course available

before April 2003, see Table ?? (A). Since mixing between the two 1+ states has been in

general accounted, the two axial-vector states are reported in Table ?? (A) as the lightest

and the heaviest of the mass eigenstates.

Considering Table ?? (A) one realizes that the mass of the scalar cs̄ was always pre-

dicted above the DK threshold of 2.36 GeV; therefore such state was expected to be

massive enough to decay through isospin conserving modes, with a broad width. For

the axial vector state, a few determinations also predicted mass values close to the D∗K

8
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S wave couplings provide about 80 MeV of relative shift.

Model insensitive. 

Coupling to decay channels near threshold results in large SU(3) breaking effects
arising from the light pseudoscalar meson mass differences.

exp



SUMMARY

• Relativistic Potential model limitations
• Failure to incorporate chiral dynamics
• Failure to include light quark pair dynamics

• Narrow heavy-light states: 
• The j= 1/2 S and P wave states can be view as a 

chiral supermultiplet.
• HQS and Spontaneous Chiral Symmetry breaking 

accounts for mass splittings.
• Many testable predictions for decay modes 

involving pions and photons.  Looks promising. 
• Mass shifts due to coupling to decay channels 

may be large.  Could explain the splitting pattern 
versus light quark mass.

QWG3                                                      IHEP Beijing, China Oct. 12-15, 2004                                                Eichten  25/25



EXTRA SLIDES



500 550 600 650 700 750 800 850 900
!M = M(K

-
"

+
K

+
) - M(K

-
"

+
)

0

2

4

6

8

0

2

4

6

8

MeV/c
2

e
v

e
n

ts
 /

 5
 (

M
e
V

/c
2
)

Mass   2569.9!4.3                        2631.5!1.9

b) D
0
 K

-

a) D
0
 K

+

550 600 650 700 750 800 850

!M =  M(K
+
K

-
"

+
 #) - M(K

+
K

-
"

+
)

0

5

10

15

0

5

10

15

20

25

MeV/c
2

e
v

e
n

ts
 /

 1
0

 (
M

e
V

/c
2
) Mass        2635.9 ! 2.9

b) mixed events

a) D
s
+ #

Fig. state events ∆M Mass Significance σ Γ χ2/nd

MeV/c2 MeV/c2 (S − B)/
√

B MeV/c2 MeV/c2

1 η(548) → γγ 5087 ± 863 544.8 ± 2.9 13.9 σ 27.8 ± 4.3 1.17

2 D+
s (2632) → D+

s η 45 ± 9.3 667.4 ± 2.9 2635.9 ± 2.9 7.2 σ 10.7 0.95

3 D+
s (2573) → D0K+ 25 ± 9 705.4 ± 4.3 2569.9 ± 4.3 5.4 σ 4.9 14+9

−6 0.77

3 D+
s (2632) → D0K+ 14 ± 4.5 767.0 ± 1.9 2631.5 ± 1.9 5.3 σ 4.9 < 17(90%CL)

TABLE I: Fit results for Figures 1-3.
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FIG. 1: M(γγ) distribution for photon pairs in the η mass
region. Results for the fit shown are in Table I. The inset
shows the background subtracted η signal. The dark points
indicate the η signal region.

followed the pattern Ds plus pseudoscalar meson. We
had good acceptance and efficiency for the Ds η channel.
Event selection required that each photon in the η → γγ
decay have E > 2 GeV and that Eη > 15 GeV. The
Ds momenta are typically 150GeV/c in the SELEX data
set, so this η energy cut is very loose. We rejected events
in which there were more than 5 η candidates. The η
signal region is shown in Fig. 1.

The results of our search are shown in the M(KKπ± η)
- M(KKπ±) mass difference distribution in Fig. 2(a). In
this plot we fixed the η mass at the PDG value [17] by
defining an η 4-vector with the measured η momentum
and the PDG η mass. A clear peak is seen for a mass
difference of 667.4 ± 2.9 MeV/c2. To estimate the com-
binatoric background, we took the Ds candidate from
one event and the η candidates from a previous event
to form a event-mixed sample representing the combi-
natoric background of true single charm production and
real η candidates. As can be seen in Fig. 2(b), the event-
mixed background models the background shape in (a)
quite well, but produces no signal peak. After the initial
sharp rise at threshold, the event-mixed background is
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FIG. 2: (a) M(KKπ± η) - M(KKπ± ) mass difference distri-
bution. Charged conjugates are included. The shaded region
is the event excess used in the estimation of signal significance.
Results for the fit shown are in Table I. (b) Mass difference
distribution for mixed events as described in the text.

fit well by a constant. Therefore we fit the signal channel
with a Gaussian plus a constant in this mass difference
interval. The width of the Gaussian was fixed at the
simulation value of 10.7 MeV/c2. We did not convolve
the resolution function with a Breit-Wigner for this fit
because the D0K+ width, to be discussed below, is con-
sistent with a 4.9 MeV/c2 Gaussian, while this peak has
Gaussian resolution of 10.7 MeV/c2. The reduced χ2 for
the fit is 0.95. There is an excess of 49.3 events over
an expected background of 51.7 events with a signifi-
cance of 7.2 σ at a mass of 2635.9 ± 2.9 MeV/c2. The
yield and the statistical significance are stable as we vary
the fit’s starting point.The signal does not change with
variations of ± 2% in the photon energy scale. We also
studied combinations of events in the Ds mass sidebands
with η candidates and candidates in the Ds mass peak
with events in the η mass sidebands. In all cases only
smooth combinatoric backgrounds, as in Fig. 2(b), were
observed.

A GEANT simulation was also used to determine the
overall acceptance for these signals. If we detected the
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14Universidade Federal da Paráıba, Paráıba, Brazil
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We report the first observation of a charm-strange meson D+
sJ(2632) at a mass of 2632.6 ±

1.6MeV/c2 in data from SELEX, the charm hadro-production experiment E781 at Fermilab. This
state is seen in two decay modes, D+

s η and D0K+. In the D+
s η decay mode we observe an excess of

49.3 events with a significance of 7.2 σ at a mass of 2635.9 ± 2.9 MeV/c2. There is a corresponding
peak of 14 events with a significance of 5.3 σ at 2631.5 ± 1.9 MeV/c2 in the decay mode D0K+.
The decay width of this state is < 17 MeV/c2 at 90% confidence level. The relative branching ratio
Γ(D0K+)/Γ(D+

s η ) is 0.16 ± 0.06. The mechanism which keeps this state narrow is unclear. Its
decay pattern is also unusual, being dominated by the D+

s η decay mode.

PACS numbers: 14.20.Lq, 14.40.Lb, 13.30.Eg

In 2003 the BaBar collaboration reported the first
observation of a massive, narrow charm-strange meson
D+

sJ(2317) below the DK threshold [1]. Confirmation
quickly followed from CLEO [2] and BELLE [3]. The

CLEO collaboration showed that a higher-lying state,
suggested by BaBar, existed and was a partner to the
D+

sJ(2317). A number of theory papers suggested dif-
ferent explanations for the unexpectedly low mass of
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• Likely  radial excitation of Ds* :    J
P= 1-    jlP=1/2-

• Mass 100-175 MeV below RQM expectations.
• Transition interaction term

• Can use chiral quark model to estimate overall coupling, g(CQM), for light 
meson transition terms in the CMS form.                        Di Pierro and EE, PRD64 (2001) 11400

• Use HQS and SU(3) to determine relations between transitions.

• HQS partner state - radial excitation of Ds 

• JP= 0-  

• Mass ~ 2525 MeV.  Near the observed 2535 P state.

• Partial Widths  (see Table)
• Ds(2632)  to  Ds + eta transition much smaller than observed.                 

Addition Contribution?
• Ds(2525) very narrow.   Two pion transition might dominate.

Properties

Given the existence of the 2S supermultiplet K, we would indeed expect mixing in these

transitions to occur, thus, a term of the form

+ig TrHv/ γ5v · AH′. (7)

If this were the only mixing state we might expect G2
A + G′

A
2 = 1. This interaction contains

the transition from the upper members of the K supermultiplet to the lower members of the

H multiplet (0+, 1+)K → (0−, 1−)H + π, as well as the lower members the K supermultiplet

to the upper members of the H multiplet (0−, 1−)K → (0+, 1+)H +π. With the identification

of the strange (1−)K as the SELEX state at 2630 MeV, and the nonstrange (1+)H states

in the vicinity of 2400 ± 150 MeV we see that all transitions with emission of a Kaon are

kinematically disallowed. Hence, we conclude that the DS(2630) can be expected to be

narrow.

(b) Intramultiplet Transitions and Mixing

In addition to these principal “Goldberger-Treiman” transitions there are intra-multiplet

pionic transitions, e.g., the (1−)H → (0−)H + π and (1+)H → (0+)H + π transitions. These

are seen in the familiar D∗()→ D(1800)+π transition, while they are blocked kinematically

in the B meson system. These are described by the operators:

gA TrHv/ γ5γµAµH + gA TrKv/ γ5γµAµK (8)

We emphasize that gA is an independent parameter than GA, though they are found to be

numerically comparable.

Again, the effects of mixing between the supermultiplets will induce a new term of the

form:

g TrH′v/ γ5γµAµH + h.c. (9)

This term now mediates a process that is observed by SELEX in the present interpretation.

In particular, this permits the decay transition: (1−)K → (0−)H + π.

For the strange-to-stange transition, Ds(1−) → Ds(0−) + η, η′ SU(3) symmetry requires

that “π” must be the η or η′ meson. Indeed, we are free to include an extra term of the

form:

g′′A TrHv/ γ5γµ∂
µη′K + h.c. (10)
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We should mention that the effects of explicit chiral symmetry breaking, that is, the

effect of the explicit light quark masses, is a delicate issue. If ms = mu,d ≈ 0, then the Ds

and Du,d spectra would become identical. Elevating ms > mu,d produces several competing

effects. For one, it tends to produce an SU(3) breaking effect in the chiral condensate that

would tend to make the mass gap between the (0−, 1−) and (0+, 1+) Ds states larger than

the Du,d, contrary to what is seen (this is a small effect as fπ ≈ feta ≈ fK ??). However,

there is also a direct chiral symmetry breaking contribution to the meson masses, which

traces to the dynamics of the boundstate, and which can have an opposite sign. If this effect

dominates, the chiral mass gaps will shrink with increasing ms, consistent with observation.

Finally, the center-of mass of the multiplet can increase with ms in a chiral invariant way.

Thus, while not predictive, the spectrum that is seen in the DS system is not inexplicable

in the present picture, while naive non-field theoretic wave-function analyses are no doubt

specious.

(a) Principal Chiral-Supermultiplet Transitions

The (0+, 1+) states contained in H (and analogously for K) will have pionic transitions

to the (0−, 1−) states with an amplitude g̃(H)
π Hγ5π · λH. In the language of nonlinear chiral

Lagrangians, this is rewritten as an axial current term of the form:

+iGA TrHv/ γ5v · AH. (4)

where the chiral currents are:

Vµ =
i

8f 2
π

[π̃, ∂µπ̃] + ... (5)

Aµ = − 1

2fπ
∂µπ̃ + ... (6)

This term describes the decays of the broad nonstrange (0+, 1+) mesons througha pion to the

(0−, 1−) groundstate. It also predicts a Kaonic transition, e.g., Ds(0+, 1+)→ Du,d + K, but

these are kinematically blocked. These states thus decay through SU(3) breaking effects,

e.g., Ds(2317) → Du,d + (η → π0), emitting a virtual η which then mixes with the π0

through isospin violating effects [8]. GA is a phenomenological parameter that cannot be

too far from unity if the picture is valid. Departure of GA from unity is a signal of mixing

in the composition of the pure parity partner states (0+, 1+).
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